Casing the Vault: Security Analysis of Vault Applications

Margie Ruffin
University of Illinois Urbana-Champaign
USA

Kirill Levchenko
University of Illinois Urbana-Champaign
USA

Abstract

Vault applications are a class of mobile apps used to store and hide
users’ sensitive files (e.g., photos, documents, and even another
app) on the phone. In this paper, we perform an empirical analysis
of popular vault apps under the scenarios of unjust search and
filtration of civilians by authorities (e.g., during civil unrest). By
limiting the technical capability of adversaries, we explore the fea-
sibility of inferring the presence of vault apps and uncovering the
hidden files without employing sophisticated forensics analysis. Our
analysis of 20 popular vault apps shows that most of them do not
adequately implement/configure their disguises, which can reveal
their existence without technical analysis. In addition, adversaries
with rudimentary-level knowledge of the Android system can al-
ready uncover the files stored in most of the vault apps. Our results
indicate the need for more secure designs for vault apps.

CCS Concepts

« Security and privacy — Privacy protections.

Keywords

Privacy; Vault App; Android

ACM Reference Format:

Margie Ruffin, Israel Lopez-Toldeo, Kirill Levchenko, and Gang Wang. 2022.
Casing the Vault: Security Analysis of Vault Applications. In Proceedings of
the 21st Workshop on Privacy in the Electronic Society (WPES °22), November
7, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3559613.3563204

1 Introduction

Mobile devices are increasingly used to carry sensitive data. While
security mechanisms such as PIN codes and Face ID can prevent
unauthorized access, in certain circumstances, users may be forced
to give away their access to the phone. A common example is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WPES 22, November 7, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9873-2/22/11...$15.00
https://doi.org/10.1145/3559613.3563204

Israel Lopez-Toldeo
University of Illinois Urbana-Champaign
USA

Gang Wang
University of Illinois Urbana-Champaign
USA

authorities may seize and search the phones of journalists and
civilians during civil unrest. In 2021, police officers confiscated the
phones and money from journalists of the Belarusian Association
of Journalists (BAJ) [13]. Recently during the Russia-Ukraine war,
civilians have been stopped at the border, and their phones have
been searched as part of a “filtration” process [3, 8, 9, 11].

To protect user privacy, a class of “vault apps” is introduced.
These apps can store and hide various user data on the phone,
including images, videos, audio, documents, and sometimes even
other sensitive apps [7]. Some vault apps can appear inconspicu-
ously on a device by disguising themselves as typical applications
such as a calculator or a clock. This feature can be helpful in times
of civil unrest or intimate partner violence (IPV) when adversaries
may obtain physical access to the victim’s phone to inspect it.

Prior works have explored using forensic analysis to detect and
break into vault apps [6, 7, 14]. The forensic analysis includes search-
ing through the mobile device’s storage image and file system for
signs of app vulnerabilities, performing code analysis, and rooting
the mobile device to uncover hidden files. Such in-depth forensic
analysis is primarily used for criminal investigations, which is not
directly applicable to the aforementioned scenarios. This is because
(1) adversaries (e.g., police at the border) may not have the time to
perform sophisticated forensic analysis during a quick inspection,
and (2) the adversaries may not be technically capable of analyzing
the phone storage or app code.

In this paper, we align our analysis closer to the threat model of
phone inspection during civil unrest or IPV. We seek to understand
how well vault apps maintain their disguise or hide user files when
facing adversaries with much limited knowledge or technical ca-
pabilities. We ask two questions: can someone infer the presence
of a vault app by simply browsing the apps on the phone? What
does it take for them to uncover the hidden files once the vault app
is identified? These questions are meaningful because authorities
may only have a few minutes to snoop through the phone in situa-
tions such as unjust searches, seizure of property, or filtration of
civilians. Only after the existence of a vault app is confirmed will
they consider further technical approaches to break into it.

To answer these questions, we select 20 vault apps from Google
Play, combining highly popular apps and those studied by prior
works. Then we simulate adversaries with varying levels of tech-
nical capability to inspect the apps. These include (1) novice-level
adversaries who have little to no knowledge of the Android sys-
tem and only check the apps to determine if a vault app exists; (2)
intermediate-level adversaries who have some knowledge of the
Android System to pull files from apps without rooting the phone,
and (3) advanced-level adversaries who have the ability to root the


https://doi.org/10.1145/3559613.3563204
https://doi.org/10.1145/3559613.3563204
https://doi.org/10.1145/3559613.3563204

device. Note that both the intermediate- and advanced-level anal-
yses still rely on the basic Android developer tools such as adb
without using advanced forensics analysis.

Our analysis returns several important findings. First, novice-
level analysis can already detect the presence of vault apps for most
of the analyzed apps. For example, we find that only 10 of the 20
apps present a decoy app as a disguise (e.g., a lock or a calculator).
Only 7 of the decoy apps have implemented the decoy functionality,
and only 5 of them would turn on the disguise automatically upon
installation. Also, only 3 apps maintain the consistent decoy app
name/icon in the App Library (file system). In other words, adver-
saries can uncover the presence of most of the vault apps without
technical analysis. Second, intermediate analysis (without rooting
the phone) can successfully retrieve files for 15 out of the 20 vault
apps, and advanced analysis (rooting the phone) can retrieve the
files for the remaining 5 apps. Common techniques used to hide
files include creating hidden folders, changing file extensions, and
modifying header bytes. Finally, only 5 of the 20 apps attempted
encrypting the files. This means most of the files in vault apps can
be easily recovered.

In summary, we present a multi-level analysis of 20 vault apps
by varying the level of knowledge and technical capabilities of
adversaries. Our threat model is more aligned with scenarios such
as unjust search and filtration of civilians (e.g., during civil unrest).
We show that without performing sophisticated forensic analysis,
adversaries can infer the existence of most of the popular vault
apps (downloaded by millions of people) and retrieve the stored
files with the rudimentary-level knowledge of the Android system.

2 Related Work

Mobile vault applications (vault apps) are designed to be privacy-
enhancing as they allow users to protect their personal data through
encryption, camouflage, and hiding [12]. Prior works have studied
their behaviors and security postures. Still, most studies are con-
sidering the threat model where adversaries can perform in-depth
technical forensics analysis on the device and apps, which is different
from our threat model.

Forensics analysis usually has two goals: (1) to determine whether
an app is a vault app and (2) to recover the data hidden in the vault.
This is done by analyzing potential artifacts left by applications on a
device. Take the Android phone, for example; such artifacts include
app-generated folders (that may contain hidden photos, videos, mes-
sages, or passwords), and the APK files of the target apps (which
can be used to reverse engineer the executable code) [6, 12, 14].

Recent works developed forensic suites to detect vault apps
(based on package names) and recover non-encrypted data [7] and
compared the encryption schemes of popular vault apps [12]. To in-
fer the behaviors of vault apps, researchers combined static analysis
of the app code and dynamic analysis of the runtime behavior (e.g.,
using simulated user interactions [1, 4]). Such analysis searches
for indicators of content hiding, system partitioning, data encryp-
tion, and application disguise [6]. Zhang et al. [14] combine several
forensics techniques to analyze 18 vault apps from Google Play
store to uncover the private data inside.

3 Methodology

3.1 Threat Model and Data Collection

Threat Model. Unlike prior works, we do not assume adversaries
have the time and technical capability to perform in-depth foren-
sic analysis on the file system and encryption scheme once they
have seized the victim’s phone. Instead, we assume adversaries
(e.g., police) only temporarily take over the victim’s phone (e.g., an
activist) to perform a quick examination. Only after the vault app
is identified will adversaries attempt to uncover the hidden files
with rudimentary methods. Our goal is to explore how likely the
readily available side channels can reveal the presence of vault app
and the hidden files. The target scenarios could be police search-
ing protesters’ phones, customs searching travelers’ phones, and
abusers searching their victims’ phones under intimate partner
violence (IPV).

Vault App Selection. We select a list of 20 Android vault applica-
tions (Table 1), combining those that are commonly studied in prior
works and those that are highly popular in the Google Play store.
First, we perform a keyword search on the Google Play store using
the keywords “vault”, “hide media”, and “hide apps”. This returns
many apps that claim to provide privacy-preserving functionality.
Then we select 10 most downloaded free vault apps, as shown in
Table 4 in the Appendix. Each of the applications chosen has ten
million or more downloads from users. Then, we select the other
10 apps from previous works [7, 14], as shown in Table 3 in the
Appendix. When selecting apps from prior works, we find that
the Video Locker app (com. handyapps. videolocker) is already in
the top 10 list (and thus, we do not need to include it again). We
also exclude apps no longer available on the Google Play store. We
select these 10 apps based on their higher download count.

Setups. After each app is downloaded from the Google Play store,
we need to perform the basic setup. First, a password or pin is
usually required to store media files in the vault. We use a random
number generator to select a 4-digit or 6-digit pin depending on the
vault app’s requirement. Then we store relevant files (.jpg, .mp3,
mp4, .txt) and/or a target android app (e.g., Facebook) depending on
the vault app’s features. Under this setup, we will emulate different
types of adversaries to examine the vault app’s behavior, ranging
from behaviors exhibited to users and the operations behind the
scenes at a lower level. As stated, we try to avoid using any ad-
vanced forensics tools and instead use the basic android file system,
APKtool, and adb to gather all the necessary information for the
analysis. The android devices used include Samsung Galaxy S9+,
LG K31 Rebel, and the Bluestacks Android emulator. Both Galaxy
S9+ and LGK31 Rebel are running on Android OS Version 10. The
Bluestacks Android emulator is running on Android 11.

3.2 Security Analysis

We emulate different adversaries to analyze each app’s security
measures and identify their vulnerabilities. The vault apps are ana-
lyzed in three settings: Novice, Intermediate, and Expert. The goal
is to identify the level of expertise needed to exploit their vulner-
abilities. The Novice level represents an attacker with little to no



technical knowledge of Android Systems; this actor can only per-
form a qualitative analysis to determine if a vault application is
on the phone. The Intermediate level represents an attacker that
has some knowledge of Android Systems. This actor can access
regular (or hidden) files stored by an app. Finally, the Expert level
represents an attacker that is highly knowledgeable about Android
and even has the ability to root the device in question. This actor
can effectively use adb (with and without root) to retrieve files and
perform backups, can decompile apks, and has the basic knowledge
of encryption schemes.

Novice Level Security Analysis. To simulate a technologically
unsavvy attacker, we seek to identify a vault app by examining the
app icon, the displayed name, and the app size. These features may
give away the presence of a privacy-preserving vault app. More
specifically, we first check whether the disguise (e.g., vault app is
presented as a calculator) is enabled automatically upon app instal-
lation and whether the icon and app name are displayed properly
on the phone screen. If the disguise is not automatically enabled, we
further examine whether it can be enabled or configured through
settings. In addition, we check whether the decoy app’s name and
icon are properly displayed in the phone’s “app library” (file system).
If the displayed name or icon in the app library does not match
those shown on the phone screen, it can break the disguise. Finally,
we examine the app size. If the app is abnormally large (e.g., for a
clock or a calculator app), it may raise suspicion.

Intermediate Level Security Analysis. At this level, we assume
the attacker can collect some files generated by the vault apps (also
referred to as artifacts). To do so, we use the Android Debug Bridge
(ADB), which is a basic command-line tool provided to Android
developers [2]. For this attack level, we first perform basic file
retrieval without rooting the phone, using the command adb pull
to obtain the app’s files from /sdcard. Another file retrieval method
(without rooting the phone) is to perform a backup operation using
adb backup. For a vault app, the developer is supposed to set the
Android: allowBackup flag to “false”. However, if the developer did
not set the flag properly, the attacker may create a backup for the
application’s files. Using these two methods, we examine whether
the private media files stored in the vault app can be discovered.

Advanced Level Security Analysis. At this level, we emulate a
strong attacker who can root the phone of interest (using the rooted
Bluestacks Android emulator). With the root access, the attacker can
further obtain files from /data/data/<package name> together
with those pulled from /sdcard and adb backup for a thorough
analysis. In addition, the attacker can obtain the app’s apk file and
use APKTool [10] to decompile the APK to obtain the source code
and the android manifest file. This allows the attacker to perform a
basic static analysis to understand the app’s workflow.

4 Results

Novice Level Analysis. For the novice qualitative analysis, the
adversaries look for clear giveaways/indicators to identify a vault
application. As shown in Table 1, these indicators appear in many
of these applications. Three example screenshots are presented in
Figure 1-3) in the Appendix.

First, only 10 out of 20 apps have a decoy app as a disguise.
The most common decoy applications used for the disguise are
either “clocks” or “calculators”. Some apps, such as com.hideitpro
have multiple decoy applications to choose from. However, only
5 of the 20 apps employ automatic disguises (i.e., enabling the
disguise immediately upon app installation). For all 10 apps, users
can enable or disable the disguise manually after the installation (i.e.,
configurable disguise). Only 7 of the decoy apps are truly functional
(i.e., a calculator decoy can work as a calculator). Second, only 3 of
the 20 apps have kept their disguise in the application file system
(i.e., app library). In other words, if the adversary browses the apps
at the app library and compares them with the same apps on the
phone screen, 17 out of the 20 vault apps do not match up. Third,
the app sizes can be a potential giveaway. Vault apps can be used
to hide different types of media files, and their storage size grows
as more files are added. For example, a real calculator app requires
6.10 MB of storage on an Android phone. However, as shown in
Table 1, the smallest vault app disguised as a calculator can take as
much as 35.17 MB of storage even before we add any files. The app
sizes grow quickly once we add a few files (a photo, a video, and a
text file) to them.

Overall, the results indicate the vast majority of the vault apps
can be identified via novice-level analysis by checking the app
names and icons and comparing them with those displayed in the
app library. The better-disguised apps can be potentially identified
by the abnormally large sizes of the app.

Intermediate Level Analysis. For the intermediate analysis, the
adversary leverages their basic knowledge of the Android file sys-
tem to extract private information from the suspected vault app
without rooting the phone.

First, we find that 10 of the 20 vault apps have the allowBackup
flag set to “true”, meaning that a complete backup of the app in any
state could be captured without root permission. For the remaining
10 apps where a backup is not an option, we attempt to retrieve its
files from the SD card (via adb pull). The attempt is successful for 5
of these apps. Second, by analyzing the files pulled using the above
two methods, we have a few observations, some of which echo
those mentioned in [14]. For example, some app developers only
change the extension of the file or simply add a header to disguise it
(without performing any encryption on the files). Other developers
may corrupt the file so that the files cannot be directly opened.
Some apps (e.g., ws.clockthevault) simply leave the files in clear-
text. Overall, we can uncover the app’s PINs and recovery emails
in plain text for 7 of the applications (see Table 2 in Appendix).

Overall, an adversary with a rudimentary knowledge of the
Android file system can easily recover private files from 15 out of
the 20 apps without rooting the phone.

Advanced Level Analysis. At this level, adversaries can root the
victim’s phone (and decompile the APK). Recall that there are still 5
apps whose files cannot be retrieved without root. With root access,
we can recover the files for 2 of the apps, as they only hide the files
by changing the file extensions and modifying the header bytes.
The files from the remaining three apps are difficult to verify since
they are corrupted/modified in an unknown manner.

Combining the results from the intermediate and advanced anal-
ysis, only 5 out of 20 apps have used some encryption schemes



«
]
—_ 2 g » » 5 x ?:. o
25| Fy |2y |SE 5| €€ 5\ B|&|< 2|2
EE | €5 |85 |22 |R|5|<|8|<|<|B|&|&
AR AR I I
24| 8 A |Zz|Z|E|E|g|8|E 2|2 |E
Default Name © < | T E T g2 < | App Size (MB)
App Package Name Decoy App = = PP
on Phone Screen Before Vs After
Calculator
com.domobile.applockwatcher AppLock Compass v VAN VAR BVAN BVAN Ve v v 45.17 — 95.63
Spirit Level
com.netqin.ps Vault N/A V|V v v 42,92 — 57.12
com.kii.safe Keepsafe Anti Virus v v v 52.39 — 62.32
com.thinkyeah.galleryvault Gallery Lock Calculator v v V| v 47.19 — 62.58
com.cyou.privacysecurity LOCX N/A [)) v vV 13.97 — 26.69
com.app.calculator.vault.hider Calculator Calculator v v v v vV v v 35.17 — 99.10
com.theronrogers.vaultyfree Vaulty N/A V|V v 13.98 — 21.61
com.morrison.gallerylocklite Gallery Lock N/A © vV v 31.63 — 41.38
com.xcs.piclock Pic Lock N/A © V| v vV 19.79 — 28.68
com.handyapps.videolocker Video Locker N/A v v 34.28 — 43.07
com.apusapps.launcher APUS N/A V|V 67.18 — 96.59
com.alpha.applock AppLock N/A VoV v v 17.65 — 49.48
com.flatfish.cal.privacy Calculator Calculator v v v v VIV VIV v v 72.09 — 237.0
com.ushareit.lockit Lockit N/A V| v v v 27.54 — 36.86
com.ultra.applock ULTRA APPLOCK Calculator v v 30.35 — 39.66
ws.clockthevault Clock Clock v v v VIiVvIiVvIVvI|V v 24.12 — 72.59
com.sp.protector.free AppLock N/A v V|V 07.47 — 17.13
com.hld.anzenbokusucal Calculator Calculator v v v v V| v v 36.20 — 39.07
com.app.hider.master.pro App Hider Calculator v v vV v v 32.92 — 40.93
Audio Manager
Calculator
com.hideitpro Audio Manager Currency Converter v v v VvV v 32.99 — 48.19
No Icon
Joke of the Day

Table 1: Qualitative Analysis of Vault Applications—We perform a qualitative review of each vault app highlighting its security and privacy

features. “v/” means a given feature is supported and it is functional; “@” means the feature exists but it is nonfunctional during our test.

to protect the files. For example, com.ushareit.lockit has en-
crypted the files using a proprietary method and has changed the
file extensions to “kcol”. A more common approach adopted by
vault apps is to store files in hidden folders (9 out of 20 apps, see
Table 2 in Appendix). We argue that the hidden folder is not a secure
measure since adversaries can easily turn on the ability to view
hidden files.

Automating The Process. The above analysis (especially file anal-
ysis) is largely done manually. However, some parts of the analysis
can be automated. To improve the analysis efficiency (for future
works), we have implemented a tool to automate the decompilation
process, the backup generation, and the artifact retrieval. Given
an APK file of interest, the tool first uses APKTool to obtain the
decompiled files. Then, based on the android manifest file, it checks
whether the backup flag is set to “true” and retrieves the app’s pack-
age name. If a backup is allowed, it utilizes the adb tool to generate
a backup. Otherwise, the tool will perform adb pull to retrieve files
from /sdcard and /data/data/<package name> directory.

5 Conclusion and Discussion

In this paper, we empirically analyze popular mobile vault apps
under the threat model of unjust search and filtration of civilians.
We show that adversaries with limited technical capability can al-
ready identify the presence of vault apps via various side channels

(e.g., app library, displayed name and icon, app interface). The main
problem is that most developers did not implement truly functional
disguises (e.g., a working calculator) or failed to maintain the dis-
guise across different interfaces. In addition, we show that with
rudimentary-level knowledge of the Android system, adversaries
can uncover the files hidden in vault apps. The main problem is
developers are using insecure methods (e.g., hidden folders, modify-
ing file extensions) to hide files. We made a list of recommendations
to developers in Appendix A. Future work can extend the analysis
scope to cover more vault apps (including the less popular ones)
or further automate the analysis procedure (based on the efforts
of Section 4). In addition, our current analysis is focused on the
Android system-many of these apps also have an iOS version with
similar characteristics. In other words, the novice-level analysis
should still be able to identify their presence. Another interesting
direction is to perform a user study to emulate the device inspection
process and explore how likely lay users can identify the presence
of a vault app. Finally, further work can explore how to system-
atically improve the security of vault apps, e.g., by implementing
more complete decoy apps and using advanced encryption algo-
rithms (e.g., deniable encryption [5]) to hide the files from both
novice-level and advanced-level adversaries.

Acknowledgements. This work was supported in part by NSF
grants 2030521, and the Graduate Research Fellowship Program
under Grant No 21-46756.



References

[1] 2020. UI/Application Exerciser Monkey. https://developer.android.com/studio/
test/monkey.

[2] 2021. What is ADB? How to Install ADB, Common Uses, and Advanced Tutorials.
https://www.xda-developers.com/what-is-adb/.

[3] Katie Balevic. 2022. Moscow police are stopping people and demanding to read
their text messages, reporter says. https://www.businessinsider.com/russian-
police-are-demanding- to-read- peoples-text-messages-reporter-2022-3.

[4] Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson, and Engin
Kirda. 2017. Curiousdroid: Automated user interface interaction for android
application analysis sandboxes. Lecture Notes in Computer Science 9603 LNCS
(2017), 231-249. https://link.springer.com/chapter/10.1007/978-3-662-54970-
413

[5] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. 2018. MobiCeal: Towards Secure and Practical
Plausibly Deniable Encryption on Mobile Devices. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 454—465.
https://doi.org/10.1109/DSN.2018.00054

[6] Gokila Dorai, Sudhir Aggarwal, Neet Patel, and Charisa Powell. 2020. VIDE -
Vault App Identification and Extraction System for iOS Devices. Forensic Science
International: Digital Investigation 33 (Jul 2020), 301007. https://doi.org/10.1016/j.
fs1di.2020.301007

[7] Michaila Duncan and Umit Karabiyik. 2018. Detection and Recovery of Anti-
Forensic (VAULT) Applications on Android Devices. Annual ADFSL Conference
on Digital Forensics, Security and Law 6 (2018). https://commons.erau.edu/adfsl/
2018/presentations/6

[8] Joyce Sohyun Lee and Jonathan Edwards. 2022. Video

shows Russian filtration camp, Mariupol mayor’s office says.

urlhttps://www.washingtonpost.com/world/2022/05/06/ukraine-mariupol-
russian-filtration-camp-video/.

Hrihoriy Pyrlik. 2022. Bribes of cash, cigarettes pave escape for Ukrainians under

Russian occupation. https://www.rferl.org/a/cash-cigarettes- can-pave-escape-

ukrainians-russian-occupation/31904352.html.

Connor Tumbleson and Ryszard Wisniewski. 2022. Apktool: A tool for reverse

engineering 3rd party, closed, binary Android apps. https://ibotpeaches.github.

io/Apktool.

Peter Weber. 2022. Russia is sorting Mariupol ‘evacuees’ at ‘filtration camps,”

based on social media posts, Ukrainians say. https://theweek.com/russo-

ukrainian-war/1011541/russia-is- sorting-mariupol-evacuees-at-filtration-
camps-based-on-social.

[12] Nannan Xie, Hongpeng Bai, Rui Sun, and Xiaoqiang Di. 2020. Android Vault
Application Behavior Analysis and Detection. Communications in Computer
and Information Science 1257 CCIS (2020), 428-439. https://link.springer.com/
chapter/10.1007/978-981-15-7981-3_31

[13] Naomi Zeveloff. 2021. Belarusian authorities raid Belarusian Association of
Journalists Headquarters, journalists’ homes. https://cpj.org/2021/02/belarusian-
authorities-raid-belarusian-association- of-journalists-headquarters-
journalists-homes/.

[14] Xiaolu Zhang, Ibrahim Baggili, and Frank Breitinger. 2017. Breaking into the vault:
Privacy, security and forensic analysis of Android vault applications. Computers
and Security 70 (2017), 516-531. https://doi.org/10.1016/j.cose.2017.07.011

[9

=

[10

—
—

A Appendix: Recommendations

We make the following recommendations to vault app develop-
ers to reduce the potential risks. First, vault apps should maintain
a consistent icon disguise and name disguise everywhere on the
phone (e.g., home screen, the application list in the setting panel,
search screen). Second, developers should implement functionally
disguised apps so that they don’t immediately raise suspicion. Third,
the entry point to the hidden files within the disguised app should
be oblivious to inspectors. For example, a calculator app can show
the hidden files only after users enter a sequence of numbers into
the calculator. This is more stealthy than popping up a dialog win-
dow asking for a PIN code. Fourth, disguises should be enabled
immediately after app installation. Fifth, developers should apply
encryption schemes to encrypt the stored files. Finally, developers
should maintain a reasonable app size (e.g., by compressing the

Plaintext Info?
Encryption?

App Package Name
com.domobile.applockwatcher

&

com.netqin.ps

\|<|<| Hidden Folder?

<

com kii.safe
com.thinkyeah.galleryvault v
com.cyou.privacysecurity
com.app.calculator.vault.hider v
com.theronrogers.vaultyfree

com.morrison.gallerylocklite
com.xcs.piclock v
com.handyapps.videolocker v
com.apusapps.launcher v
com.alpha.applock

com.flatfish.cal.privacy

ANERNAN

NENEN

com.ushareit.lockit v
com.ultra.applock
ws.clockthevault
com.sp.protector.free
com.hld.anzenbokusucal

SNENEN

com.app.hider.master.pro
com.hideitpro v
Table 2: Additional Qualitative Analysis of Vault Applica-

tions—This table provides additional results from our qualitative review.

«

v'” means a given feature is supported and it is functional

Google Samsung Calendar Camera

8 % =

Email  Facebook  Gallery

Figure 1: com.kii.safe—This vault app is disguised as an anti-virus
application. When opening the app, an interface is implemented to mimic

an anti-virus software.

stored files) or by choosing disguises that are supposed to have a
large size.


https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.xda-developers.com/what-is-adb/
https://www.businessinsider.com/russian-police-are-demanding-to-read-peoples-text-messages-reporter-2022-3
https://www.businessinsider.com/russian-police-are-demanding-to-read-peoples-text-messages-reporter-2022-3
https://link.springer.com/chapter/10.1007/978-3-662-54970-4_13
https://link.springer.com/chapter/10.1007/978-3-662-54970-4_13
https://doi.org/10.1109/DSN.2018.00054
https://doi.org/10.1016/j.fsidi.2020.301007
https://doi.org/10.1016/j.fsidi.2020.301007
https://commons.erau.edu/adfsl/2018/presentations/6
https://commons.erau.edu/adfsl/2018/presentations/6
https://www.rferl.org/a/cash-cigarettes-can-pave-escape-ukrainians-russian-occupation/31904352.html
https://www.rferl.org/a/cash-cigarettes-can-pave-escape-ukrainians-russian-occupation/31904352.html
https://ibotpeaches.github.io/Apktool
https://ibotpeaches.github.io/Apktool
https://theweek.com/russo-ukrainian-war/1011541/russia-is-sorting-mariupol-evacuees-at-filtration-camps-based-on-social
https://theweek.com/russo-ukrainian-war/1011541/russia-is-sorting-mariupol-evacuees-at-filtration-camps-based-on-social
https://theweek.com/russo-ukrainian-war/1011541/russia-is-sorting-mariupol-evacuees-at-filtration-camps-based-on-social
https://link.springer.com/chapter/10.1007/978-981-15-7981-3_31
https://link.springer.com/chapter/10.1007/978-981-15-7981-3_31
https://cpj.org/2021/02/belarusian-authorities-raid-belarusian-association-of-journalists-headquarters-journalists-homes/
https://cpj.org/2021/02/belarusian-authorities-raid-belarusian-association-of-journalists-headquarters-journalists-homes/
https://cpj.org/2021/02/belarusian-authorities-raid-belarusian-association-of-journalists-headquarters-journalists-homes/
https://doi.org/10.1016/j.cose.2017.07.011

Application Name Name on Device = Package Name Version Number of Downloads
APUS Launcher: Themes, Hide Apps, Launcher App APUS com.apusapps.launcher 3.10.34 100M+
AppLock - Fingerprint & Password, Gallery Locker AppLock com.alpha.applock 4.0.1 50M+
Calculator Lock - App Hider & Photo Vault - HideX Calculator com.flatfish.cal.privacy 3.1.7.14 50M+
AppLock - Fingerprint AppLock com.sp.protector.free 7.9.2 50M+
Calculator- Photo Vault & Video Vault hide photos Calculator com.hld.anzenbokusucal 10.0.7 10M+
App Hider- Hide Apps Hide Photos Multiple Accounts App Hider com.app.hider.master.pro  2.9.2_703d758f7 10M+
Hide Photos, Video and App Lock - Hide it Pro Audio Manager com.hideitpro 8.4 10M+
LOCKit - App Lock, Photos Vault, Fingerprint Lock Lockit com.ushareit.lockit 2.3.58 ww 10M+
Ultra AppLock-Ultra AppLock protects your privacy ULTRA APPLOCK  com.ultra.applock 6 10M+
Clock - The Vault : Secret Photo Video Locker Clock ws.clockthevault 9 10M+

Table 3: Most Downloaded Android Vault Applications (Google Play Store).

Application Name Name on Device Package Name Version Number of Downloads
AppLock AppLock com.domobile.applockwatcher 3.3.2 100M+
Vault - Hide Pics & Videos, App Lock, Free Backup Vault com.netqin.ps Varies 50M+
Keepsafe Photo Vault: Hide Private Photos & Videos Keepsafe com.kii.safe 10.2.15 50M+
Hide Pictures & Videos - Vaulty Vaulty com.theronrogers.vaultyfree Varies 50M+
Gallery Lock (Hide pictures) Gallery Lock com.morrison.gallerylocklite 5.1 10M+
Pic Lock- Hide Photos & Videos Pic Lock com.xcs.piclock 3.1 10M+
Video Locker - Hide Videos Video Locker com.handyapps.videolocker 2.13 10M+
Gallery Vault - Hide Pictures And Videos Gallery Lock com.thinkyeah.galleryvault 3.19.8 10M+
LOCX Applock Lock Apps & Photo LOCX com.cyou.privacysecurity 2.39 10M+
Calculator Vault : App Hider - Hide Apps Calculator com.app.calculator.vault.hider ~ 2.9.2_f0f859a1f 10M+
Table 4: Android Vault Applications Tested in Previous Work.
| oL sriock : < rons o
Draw your unlock pattern Al (83) ¥

Apps

All(83) v
@ ULTRA APPLOCK
=), ~AmazomShopping

A Android Auto

@ Android System WebView

e ANT Radio Service

C

Figure 3: com.ultra.applock—This vault app is disguised as a calcu-
lator. However, when the inspector checks out the app from the app library,
it reveals its original name “ULTRA APPLOCK” and its vault app icon.
Also, when the inspector opens the app, it does not display the decoy app
(calculator) interface. Instead, it directly displays the vault interface.

SmartSafe
Tips

@ Vault
iserd Voicemail

(Y]

Weather &
0 Work profile
@ Your Phone Companion

o YouTube

Figure 2: com.netqin.ps—This vault app does not employ a decoy app
as a disguise. The app directly displays itself as a vault app.
B Appendix: Other Supporting Materials

App examples are presented in Figure 1-3. The detailed app list is
shown in Table 3 and 4. Table 2 shows additional analysis results.



	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Threat Model and Data Collection
	3.2 Security Analysis

	4 Results
	5 Conclusion and Discussion
	References
	A Appendix: Recommendations
	B Appendix: Other Supporting Materials

