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ABSTRACT
Inter-Component Communication (ICC) provides a message passing
mechanism for data exchange between Android applications. It has
been long believed that inter-app ICCs can be abused by malware
writers to launch collusion attacks using two or more apps. However,
because of the complexity of performing pairwise program analysis
on apps, the scale of existing analyses is too small (e.g., up to several
hundred) to produce concrete security evidence. In this paper, we
report our findings in the first large-scale detection of collusive
and vulnerable apps, based on inter-app ICC data flows among
110,150 real-world apps. Our system design aims to balance the
accuracy of static ICC resolution/data-flow analysis and run-time
scalability. This large-scale analysis provides real-world evidence
and deep insights on various types of inter-app ICC abuse. Besides
the empirical findings, we make several technical contributions,
including a new open-source ICC resolution tool with improved
accuracy over the state-of-the-art, and a large database of inter-app
ICCs and their attributes.
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1. INTRODUCTION
An active and continuous operational effort is necessary to detect

stand-alone malicious apps. A recent report showed that hundreds of
Trojanized apps were missed by Google’s detection and some pop-
ular DressCode apps were downloaded over 100,000 times before
taken off the Google Play Market [11]. In the meantime, researchers
(e.g., [4, 5, 19, 20]) have identified more complex threats associated
with app pairs, i.e., inter-app communication security.

Inter-app data-flow analyses go beyond the scope of a single app
by bridging the data flows of two potentially communicating apps
and analyzing the resulting longer paths for data leaks. For example,
an app A accesses the location of the phone, passes the data to
another app B, which sends it to an external server. Android apps
typically use Inter-Component Communication (ICC), a message
passing mechanism, to exchange data. Again, components within
the same app also use ICC to communicate with each other [23,
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35]. App pairs may communicate via explicit or implicit intent,
depending on whether the specification describes the name of the
target component (in the explicit intent) or only the attributes (in the
implicit intent).

Inter-app data-flow analyses are motivated by the need for char-
acterizing the collective security behavior of two (or more) applica-
tions. For example, to answer questions such as How many inter-app
data flows are sensitive and result in external data-leaks and/or priv-
ilege escalations? Do these leaks use explicit intents or implicit
intents for the communication between the pairs? What is the most
commonly observed sensitive information that is leaked? There may
be different reasons behind sensitive inter-app data leaks. During
an intentional malware collusion, two apps would work together
to complete an attack goal [24]. Because of the evolving nature of
attacks and defenses, this new threat is indeed conceivable. With col-
lusion, malware writers can develop multiple benign looking apps
to evade the existing single-app screening mechanisms. These apps
can complement each other’s privileges and accomplish attack goals.
Single-app scanners (e.g., [1, 2, 12, 30]) cannot provide complete
data-flow characterizations essential for inter-app threat analyses.

Inter-app data leaks may also be due to vulnerable apps being ex-
ploited for privilege escalations [9, 33]. Therefore, another relevant
question is Can we distinguish intentional data leaks (i.e., collusion)
from unintentional data leaks (due to vulnerable apps)? Answers to
these questions will help securing the mobile ecosystem, but have
not been answered in the literature.

The expensive nature of pairwise app analysis is a main obstacle
to answering these questions. It requires an in-depth data-flow anal-
ysis for all apps, beyond the ICC interfaces. In addition, because of
the intrinsic worst-case quadratic complexity (O(N2), where N is
the total number of apps) of the ICC linking operation, scaling the
analysis to hundreds of thousands of apps is challenging. Despite
recent efforts on inter-app ICC analysis, no satisfactory solution
exists that can support a large-scale pairwise analysis. For instance,
ApkCombiner extracts suspicious inter-app ICCs by combining
multiple apps into a single app, and then performs a conventional
single-app data-flow analysis [20]. This approach is barely scalable,
since an expensive data-flow analysis is repeated for all possible
combinations of app-pairs [33]. COVERT [4] and DidFail [19] elimi-
nate the need for redundant data-flow analysis by analyzing each app
only once. However, COVERT uses formal model checkers incur-
ring high overhead. DidFail’s experimental evaluation is small and
uses an erroneous ICC intent resolution mechanism [29]. Although,
PRIMO predicts the likelihoods of inter-app ICC occurrences [26],
it is not designed for collusion detection.

In this work, we develop a scalable and accurate tool DIAL-
Droid (Database powered ICC AnaLysis for anDroid) for inter-app
ICC analysis. We use DIALDroid to perform the first systematic



large-scale security analysis on inter-app data-flows among 110,150
apps, including 100,206 most popular apps from the Google Play,
and 9,944 malware apps from the Virus Share1. DIALDroid com-
pletes such a large-scale analysis within a reasonable time frame
(6,340 total hours of program analysis and 82 minutes of ICC linking
and detection). Our key design characteristics include an adaptive
and pragmatic data flow analysis, highly precise ICC resolution, fast
ICC matching, and ability to execute fast queries on an optimized
relational database. Our paper provides empirical evidence on app
collusion and privilege escalations. We summarize our contributions
as follows.

• We develop an Android security tool, DIALDroid, for ana-
lyzing ICC-based sensitive inter-app data flows. Our design
leverages relational database for a scalable matching of ICC en-
try and exit points, and fast analysis. DIALDroid outperforms
state-of-art solutions (IccTA+ApkCombiner2 and COVERT)
on benchmark apps, with a higher accuracy (precision 100 %,
recall 91.2%) and orders of magnitude shorter processing time.
In addition, DIALDroid’s ICC extractor is more accurate than
the state-of-the-art solution IC3 [28], with 28% more identified
intents and 33% less failed cases.

• We use DIALDroid to analyze the sensitive inter-app ICCs
among 100,206 apps from the Google Play Market, and char-
acterize them into 6 threat categories (in Table 3). Our threat
categorization is based on threat types (collusive data leak or
privilege escalation) and intent types (explicit or implicit).

We found that collusive data leaks and privilege escalations
mostly use implicit intents but did not observe any explicit-
intent based collusion. These findings suggest that collusive
data leak research should start to examine implicit intents,
rather than focusing on explicit intents (e.g., [13]). Our case
studies revealed a number of privilege escalation cases among
same developer app pairs.

Although the total numbers of sensitive ICCs and app pairs
are extremely high, the number of sender apps initiating these
ICCs is surprisingly small. E.g., 1,785,102 inter-app ICCs
exhibiting privilege escalation behavior (without collusive data
leaks) are originated from 62 sender apps. We also had similar
observations in other threat categories. We found that the
majority of inter-app ICCs (> 99%) do not carry any sensitive
data. This property implies that the typical workload of inter-
app ICC analysis is much lower than the worst case workload.

• Our dataset and tools can potentially benefit the broader An-
droid community. We have open-sourced our entire tool-suite
on GitHub3 and have made our database available4 for other
researchers. Our database contains extremely rich data-flow
attributes of 100,206 apps from the Google Play and 9,944 apps
from the Virus Share. These attributes are extracted by Flow-
Droid static program analysis, organized into multiple rela-
tional tables. We envision the database being useful to both the
security and data mining communities to tackle open research
questions. In addition, we have released a benchmark suite for
inter-app collusion analysis, DIALDroid-Bench5, which con-

1 http://virusshare.com
2 IccTA [21] is designed for intra-app ICCs in a single app. It

needs to use ApkCombiner [20] to combine app-pairs for inter-
app ICC analysis.

3 https://github.com/dialdroid-android/.
4 http://amiangshu.com/dialdroid/
5 https://github.com/dialdroid-android/dialdroid-bench/

tains 30 real-world apps from Google Play. To our knowledge,
this is the first inter-app collusion benchmark using real-world
apps, as opposed to proof-of-concept apps.

2. THREAT MODEL
Before we present our threat model, we first provide a brief

overview of the Android ICC architecture and how malicious apps
can leverage inter-app ICCs to leak sensitive information. Compo-
nents are the basic building blocks of Android apps. There are four
types of components6. Activities, the most common components,
represent user interfaces. Services perform background processing.
Broadcast receivers respond to system-wide broadcast announce-
ments (e.g., Wifi connected). Finally, content providers manage
a shared set of application data. Components communicate using
URIs and Intents, within an application (i.e., intra-app ICC) or be-
tween applications (i.e., inter-app ICC). An ICC exit point requires
an intent object as a parameter. An intent is either explicit (i.e.,
its recipient is explicitly named) or implicit (i.e., only a general
action is declared). Android system resolves intents at runtime. An-
droid’s intent resolution7 is based on (1) attributes of an implicit in-
tent (namely action, category, and data), and (2) IntentFilter
fields declared in the manifests (AndroidManfest.xml) of po-
tential receiver apps. The receiver app provides the ICC entry point.
Resolving intents through string analysis is a key to the detection
accuracy. Failure to identify matching ICC exit and entry points
results in missed detection (i.e., false negative).

Our inter-app security analysis is oriented around identifying pair-
wise data flows from a sender appA to a receiver appB that result in
two types of threats: collusive data leak or privilege escalation. Priv-
ilege escalation (aka the confused deputy problem) is a well-defined
threat where the receiver app B gains unauthorized permissions or
sensitive data as a result of its ICC communications with the sender
app A [6, 9]. Although the concept of collusive data leak has been
described in the literature [5, 24], it has not been formally defined.
In our work, we define collusive data leak as a threat where the
receiver app B exfiltrates the sensitive data obtained from its ICC
communications with the sender app A to an external destination
(e.g., via disk output or network output).

Our analysis aims to detect sensitive data flows that result in
privilege escalation, collusive data leak, or both. Our labeling of
sensitive source and sink statements follows the SuSi project [31],
based known sensitive APIs (e.g., API to access deviceID). Insensi-
tive data flows and sensitive data flows that do not exhibit collusive
data leak and privilege escalation threats are excluded from the anal-
ysis. Our threat model excludes intent spoofing, where the sender
app forges intents to mislead receiver apps [9]. We consider both
explicit and implicit intents.

Next, we first give our definitions for the security terms used in
the paper, including ICC exit leak, ICC entry leak, and sensitive ICC
channel. We then give formal definitions of both privilege escalation
and collusive data leak threats. Our experiments further distinguish
6 different subtypes of threats, based on various ICC and security
properties (in Table 3).

A sensitive ICC channel refers to an ICC link between
two components, from an ICC exit point (i.e., an outgo-
ing ICC such as startActivity, bindService, and
startActivityForResult) to an ICC entry point (i.e., an
incoming ICC such as onActivityResult and getIntent)
that transfers intents containing sensitive information. Our analysis

6 http://developer.android.com/guide/components/fundamentals.html
7 http://developer.android.com/guide/components/intents-

filters.html#Resolution



is focused on sensitive ICC channels and excludes non-sensitive
ICC channels.

A property of ICC exit leak is that an app’s ICC exit point is data
dependent on a sensitive data source, i.e., there exists a data-flow
path from the sensitive source to the ICC exit. In the context of
inter-app ICCs, we use the ICC exit leak to describe the sender app.
Intuitively, ICC exit leaks identify sender apps that leak sensitive
data via inter-app ICCs.

A property of ICC entry leak is that an app’s ICC entry point
is the source of data-flow paths of sensitive sinks that send the
received data externally (e.g, via networks). In the context of inter-
app ICCs, we use the ICC entry leak to describe the receiver app.
Intuitively, ICC entry leaks identify receiver apps that leak received
data externally. Next, we use the terminology introduced above to
define privilege escalation and collusion data leak.

• Collusive data leak is a threat associated with a sensitive
ICC channel between a sender component A in an app and a
receiver component B in another app, where A has an ICC
exit leak and B leaks the received data from A via an ICC
entry leak.

• Privilege escalation is a threat associated with a sensitive
inter-app ICC channel between a sender component A in an
app and a receiver component B in another app, where A has
an ICC exit leak andB does not have the permission to access
the data from A.

A collusive data leak may also result in a privilege escalation. Be-
cause of the overlap between the two threats, we further divide them
into 6 sub-categories of threats in Table 3. Inter-app ICCs that result
in neither collusive data leak or privilege escalation are not recorded.
Intentional vs. Unintentional Attacks. One of the difficulties in
collusion detection is to confirm the cause of an observed problem-
atic data flow. It is well known that vulnerable sender apps (e.g., with
exposed broadcast ICC interfaces) cause privilege escalations [9],
i.e., the receiver app can intentionally exploit the vulnerabilities.
However, intentional collusion between two apps may also result
in privilege escalation. Similarly, collusive data leak may be inten-
tional or inadvertent. Regardless of the causes, these data flows can
potentially compromise the device and data security. Our large-scale
empirical study helps expose and pinpoint these disguised threats.

3. DIALDROID OVERVIEW
The workflow of our inter-app ICC security analysis involves

four key operations: ICC ENTRY / EXIT POINT EXTRACTION,
DATAFLOW ANALYSIS, DATA AGGREGATION, and ICC LEAK CAL-
CULATION. They are briefly described below.

• ICC ENTRY / EXIT POINT EXTRACTION: Given an app, we ex-
tract the permissions and the attributes of the intent filters from
the AndroidManifest.xml file. We perform static anal-
ysis to determine the attributes of the intents passing through
ICC exit points.

• DATAFLOW ANALYSIS: We use static taint analysis to de-
termine ICC exit leaks and ICC entry leaks in an app. We
dynamically adjust the precision configuration of taint analysis
to ensure the timely completion of each app.

• DATA AGGREGATION: We aggregate the data extracted in
previous two steps to store in a relational MySQL database.
DIALDroid database schema is composed of 42 tables and is
designed to facilitate efficient storage and fast data retrieval.

• ICC LEAK CALCULATION: We use fine-grained security poli-
cies to detect potential sensitive inter-app ICC channels. Using
SQL stored procedures and SQL queries, we compute ICCs
with collusive data leaks and privilege escalations.

DIALDroid executes the first three steps once for each app
(complexity O(N), where N is the total number of apps being
analyzed). The complexity of ICC leak calculator isO(mN), where
m is the number of apps with ICC exit leaks and in the worst case,
m = N . However, for real-world apps m would several times
smaller than N . In our study, we found m is 28 times smaller than
N (explained in the appendix).

3.1 ICC Entry / Exit Point Extractor
This operation identifies all the ICC end points (both entries and

exits) from apps, by performing a single pass of analysis on each
app. We describe our new tool IC3-DIALDroid for this purpose.
We have made this tool open source.8 Our ICC entry point extractor
subsystem extracts the manifest file from the apk, parses the per-
missions requested by the app, and parses the ICC entry points of
that app from IntentFilters. We use static analysis to identify
intent values, similar to prior studies [28, 29, 35]. Although our im-
plementation uses the libraries provided by IC3, the state-of-the-art
ICC extractor [28], our IC3-DIALDroid has several significant en-
hancements providing better robustness and higher intent discovery
than IC3, which are described next.

IC3 conservatively adopts call graph generation procedure from
FlowDroid skipping incremental callback analysis, which incre-
mentally extends the call graph to include the newly discovered
callbacks, and the scan is run again since callback handlers are free
to register new callbacks on their own. This process is repeated until
the call graph reaches a fixed point [3]. One pass callback analysis
improves the runtime performance of IC3. However, it results in
missed intents due to imprecise Android lifecycle modeling. In com-
parison, IC3-DIALDroid implements incremental callback analysis,
which significantly increases the number of discovered intents.

IC3-DIALDroid analyzes on Android .apks directly. It does not
require the Dare tool for reverse engineering [27], and can directly
extract the attributes of ICC exit points. In comparison, IC3 is
dependent on the Dare tool. Although Android apps are developed
in Java, those are compiled into Dalvik bytecode (a custom format
developed by the Android project), instead of traditional Java class
file. Thus, IC3 requires the Dalvik bytecode to be retargeted using
Dare, which not only requires additional preprocessing time, but
also may introduce inaccuracies [27].

We identified several defects in IC3, specifically in handling
different types of real-world apks and the constraint solver’s failure
to reach a fixed point even after a long time for some apps. We
fixed those defects and implemented code to identify and break race
conditions.

We compared the performance of IC3-DIALDroid with IC3 on 29
applications from DroidBench 3.0 and 1,000 randomly selected apps
with a timeout of 15 minutes for each app. Table 1 shows a compar-
ison between the two tools. On DroidBench, DIALDroid took 13
seconds (8.6%) less than IC3 to compute entry and exit points and
identified the same number of intents. On the 1,000 randomly se-
lected real-world apps, DIALDroid identified 28% more intents and
encountered 33% less failed cases. However, due to more precise
lifecycle modeling, IC3-DIALDroid spent 13.3% more time.

8 Available at: https://github.com/dialdroid-android/
ic3-dialdroid.



Table 1: Comparisons of our ICC extractor tool IC3-DIALDroid
with the state-of-the-art IC3, in terms of robustness, accuracy, and
runtime on benchmark apps and 1,000 real-world apps. Our tool
identifies 28% more intents and has 33% fewer failed cases for
real-world apps.

DroidBench 3.0 1,000 Real-World Apps

Failed Intents
found Time Failed Intents

found Time

IC3 0 27 151s 123 30,640 43hrs
Ours 0 27 138s 83 39,080 48hrs

3.2 Dataflow Analyzer
We considered the three state-of-the-art static analysis tools for

Android apps, 1) FlowDroid [3], 2) Amandroid [35], and 3) Droid-
Safe [15], to build a dataflow analyzer. While DroidSafe [15] claims
to be the most precise static analysis tool, it is 20 to 50 times slower
compared to FlowDroid and Amandroid. While both the FlowDroid
and the Amandroid offered similar runtime performances, we found
that FlowDroid rarely failed to analyze an app. Therefore, we build
our Dataflow analyzer based on the FlowDroid, but make several
pragmatic improvements.
1) Number of sources / sinks: Static taint analysis requires a set of
sources (e.g., originating methods of sensitive data, such as API
calls to retrieve a user’s location) and a set of sinks (e.g., methods
through which data can exit the application or device). The number
of sources / sinks in an app impacts the taint analysis time. To
manage the number of sources and sinks, the dataflow analyzer
analyzes an app in two steps. First, for each of the ICC exit points,
we investigate if the intents sent through that point can potentially
include any sensitive information (i.e., determine the ICC exit leaks).
The dataflow analyzer labels the sensitive API calls identified by
SuSi [31] as sources and labels all the methods that initiate ICCs as
sinks. Second, for each of the ICC entry points, we investigate if
the data extracted from intents can potentially flow out of the appli-
cation (i.e., determine the ICC entry leaks). The dataflow analyzer
labels the methods to access intent data (e.g., getIntent, and
onActivityResult) as sources and labels all sinks identified
by SuSi [31] as sinks.
2) Retry with a less precise configuration: We used two types of
configuration for the dataflow analyzer.
High precision configuration: This configuration supports a context-
sensitive algorithm with an access path length = 3. In this configu-
ration, the dataflow analyzer builds the complete taint paths. (An
access path is of the form a.b.c, where a is a local variable or pa-
rameter and b and c are fields. The variable a.b.c has an access path
length = 2. An access path length = 0 means a simple local variable
or parameter (i.e., in this case a) [3].)
Low precision configuration: This configuration supports a context
insensitive algorithm, which does not consider calling context. It is
significantly faster, but may have false positives. In this configura-
tion, the access path length is set to 1 and the dataflow analyzer only
identifies the sources and sinks, but skips building the complete taint
paths.

By default, the dataflow analyzer runs with the high precision
configuration. However, if a precision-analysis fails to complete
within our specified time (i.e., 5 minutes), DIALDroid abandons
the analysis, and retries with the low precision configuration. To
recover from possible deadlocks, we limit the analysis time for each
app to 20 minutes (i.e., if the analysis for an app does not complete
within 20 minutes, DIALDroid abandons that analysis).

3.3 Data Module and ICC Leak Calculator
The data module of DIALDroid aggregates the attributes of an

app extracted by the ICC entry / exit point extractor (Section 3.1)
and the dataflow analyzer (Section 3.2). The data module stores
the aggregated data in a MySQL database. DIALDroid leverages
the power of relational databases to overcome scalability issues.
Relational databases provide efficient data storage. More impor-
tantly, modern relational database management systems facilitate
powerful query capabilities to easily transform and retrieve data.
DIALDroid uses a highly normalized database schema to efficiently
store data and uses indexes on the comparison attributes to support
efficient query computation. Our database is composed of 42 tables
with a total of 161 attributes. A supplementary website9 provides a
detailed diagram of the database schema.

Algorithm 1 A SQL query to detect inter-app ICC based collusive
data leaks.

1 SELECT sender.app AS senderapp, idl.method,
idl.leak_path AS sender_app_path, receiver.app AS
receiverapp, entryLeaks.leak_path AS
receiver_app_path, entryLeaks.leak_receiver,
icc_type FROM SensitiveChannels

2 INNER JOIN Applications sender ON
SensitiveChannels.fromapp=sender.id

3 INNER JOIN Applications receiver ON
SensitiveChannels.toapp=receiver.id

4 INNER JOIN EntryPoints ep ON
ep.class_id=SensitiveChannels.entryclass

5 INNER JOIN ICCEntry_DataLeaks entryLeaks ON
entryLeaks.entry_point_id=ep.id

6 INNER JOIN ICCExit_DataLeaks idl ON
idl.exit_point_id=SensitiveChannels.exitpoint

7 LEFT JOIN Intent_Extras ON
Intent_Extras.intent_id=SensitiveChannels.intent_id

8 -- either no data is passed via putExtra
9 WHERE (Intent_Extras.id IS NULL) or

10 -- OR data is passed via putExtra and receiver path
also contains the key

11 (Intent_Extras.extra IS NOT NULL AND
entryLeaks.leak_path LIKE CONCAT
(’%’,Intent_Extras.extra,’%’))

We implement the key calculateSensitiveChannels
procedure inside the database as a SQL stored procedure. This de-
sign minimizes potential data transmission delays and leverages the
speed, optimization, and efficient queries provided by the database
management systems. Because all the inter-app ICC threats in our
attack model concern sensitive ICC channels (specifically, requir-
ing ICC exit leaks in sender apps), it is unnecessary to compute
ICC links for the intents that cannot possibly contain any sensitive
information. It drastically reduces the computation complexity.

While matching explicit intents are straightforward, the resolu-
tion of an implicit intent involves matching the action, category
and data fields with compatible IntentFilter, known in the
Android development guide as action test, category test, and data
test, respectively. We write SQL queries to compute all the sen-
sitive ICC links originating via implicit intent from a specific
app. Due to the complex matching rules, we create two SQL
procedures: categorytest(intent_id,filter_id) and
datatest(intent_id,filter_id), which implement the
category test and data test, respectively. Queries to compute ICC
channels via explicit intents are much simpler. Algorithm 3 in the ap-
pendix shows the pseudocode for calculating sensitive ICC channels
to and from an app.

For computing privilege escalations, we test if the receiver app in a
sensitive ICC channel has permissions to access the data transmitted
via the carried intent. For computing collusive data leaks, we check
if a sensitive ICC channel is joining an ICC exit leak in an app

9 https://github.com/dialdroid-android/dialdroid-db



with an ICC entry leak in another app. We show an example query
for detecting collusive data leaks in Algorithm 1. In addition, our
supplementary website provides scripts to generate all the SQL
procedures and the SQL queries.

The intent resolution in DIALDroid is based on the libraries
provided by IC3. However, in some cases, string analysis in IC3
cannot accurately determine possible values and therefore generates
safe over-approximated sets (e.g., ‘.*’, a regular expression matching
any string constant) [28]. A recent study found that 95% of the
ICC links generated by the intents with attributes (i.e., package,
component, action, or category) resolved as ‘.*’ were infeasible [26].
Therefore, the strict intent matching rules implemented by our ICC
leak calculator ignores such over-approximated regular expressions.
While this modification may introduce a few false negatives, it
greatly reduces the number of false positives in the subsequent
detection.

4. EVALUATION AND FINDINGS
Our evaluation aims to answer the following questions.

1. How does DIALDroid compare with other inter-app ICC anal-
ysis tools (namely IccTA+ApkCombiner and COVERT), in
terms of both detection accuracy and runtime over benchmark
apps? (In Section 4.1) Similarly, for conventional intra-app
ICC analysis? (In Section B.1 in the appendix)

2. Are there explicit-intent based privilege escalation or collusive
data leak pairs? How many cases are via implicit intent based
ICCs? Which threat is more common, privilege escalation or
collusive data leak? (In Section 4.2)

3. What are the detected app pairs and what do they leak? (Case
studies in Section 4.3)

4. How many apps have ICC exit leaks? How many apps have
the ICC entry leaks? What is the distribution of sensitive ICC
channels across app categories? (In Sections 4.4 and 4.5)

5. What are the top 10 leaked permissions in privilege escalation
cases? What categories of Google Play apps cause the most
collusive data leaks? (In Section 4.6)

6. What are the reasons for unintended ICCs with mismatched
data types? (In Section 4.7)

7. How long does DIALDroid take to analyze hundreds of thou-
sands of real-world Android apps? (In Section 4.8)

In addition, we also released a benchmark consisting of real-
world apps for comparing the detection capabilities for collusive
data leaks. Unless specified, experiments were conducted on a
Dell Tower Precision 7810 workstation running Ubuntu 14.04LTS
64bit with 16 core Intel Xeon 2.4GHz CPU, 64GB RAM, and an
SSD drive. We enlisted four virtual machines for the large-scale
experiment in 4.8.

We evaluate both real-world apps and benchmark suites. Our
three datasets are described below.

• Dataset I (Benchmarks). We evaluate benchmarks below.

DroidBench 3.0: DroidBench is the most comprehensive
benchmark suite to evaluate the effectiveness of Android taint
analysis tools. Among the 174 test cases provide by the
DroidBench 3.0 10, 10 test-cases aim to evaluate intra-app
leaks and 11 test-cases aims to evaluate inter-app collusions.

10 https://github.com/secure-software-engineering/DroidBench/
tree/develop

DroidBench (IccTA): IccTA introduced 23 test cases for
intra-app leaks and 6 test-cases for inter-app leaks and are
available in the IccTA branch 11 of the DroidBench.

ICC-Bench: ICC-Bench 12, introduced by Amandroid [35],
provides 11 test cases for Intra-app leaks. While ICC-Bench
did not mention about inter-app leaks, we found and verified
9 inter-app leaks in ICC-Bench.

For inter-app ICC analysis, our comparison is on 21 inter-app
ICC test cases from these benchmark suites. We also evaluate
44 intra-app ICC test cases for completeness. A test case may
contain multiple ICC leaks.

• Dataset II (Google Play apps). Dataset II consists of 100,206
most downloaded Android apps (as of June, 2015) belong-
ing to 16 popular categories from Google Play. Table 7 in
the appendix shows the distribution of the apps across the
categories.

• Dataset III (All real-world apps). Dataset III (total 110,150
apps) consists of all apps from Dataset II as well as 9,944
malware apps from Virus Share.

4.1 Inter-app ICC Benchmark
Table 2 shows the benchmark comparison results of our inter-app

ICC analysis. DIALDroid has the highest precision 13 (100%), the
highest recall 14 (91.2%), and the highest F-measure (0.95) among
the three tools. IccTA performed poorly (12.5% recall), mainly
because ApkCombiner was unable to combine the majority of the
app pairs (62%). For the successfully combined apks, IccTA can
only detect the inter-app leaks that are in DroidBench-IccTA (i.e.,
the benchmark that was developed by the same authors). Due to
inaccurate intent resolutions, COVERT reported a high number of
false positives (323). COVERT failed to detect all inter-app leaks
from the DroidBench 3.0.

We performed manual inspection on our failed cases. Among the
21 inter-app pairs, nine lead to privilege escalation. DIALDroid was
able to detect five of those with a 100% precision and 55.5% recall.
DIALDroid failed to report transitive (indirect) privilege escalations
(i.e., data leaked via an intermediate component with the same level
of permissions as the source component). In contrast, COVERT
failed to report any of those nine privilege escalations.

We compare the inter-app analysis runtime of COVERT, Ic-
cTA+ApkCombiner, and DIALDroid, with 57 randomly selected
apps from Google Play Market. Out of the 1,596 pairs, ApkCom-
biner was able to combine only 501 pairs (31%) and IccTA took
203 hours to complete on the combined apps. COVERT ran for 26
hours and then crashed during the formal model generation step [4].
In comparison, DIALDroid took 6.1 hours to complete. It only
abandoned two apps, as DIALDroid was unable to finish within 20
minutes during those two cases.

For completeness, benchmark evaluation on intra-app ICCs is
described in Section B.1 in the appendix.

4.2 Threat Breakdown for Dataset II
We break down the threats into six disjoint categories, which are

listed as threat types I to VI in Table 3. The categories are disjoint in
that an inter-app ICC belongs to one and only one category. Some
sender apps may appear in ICCs of multiple categories. We then run

11 https://github.com/secure-software-engineering/DroidBench/
tree/iccta

12 https://github.com/fgwei/ICC-Bench
13 Precision is the percentage of identified cases that are true leaks.
14 Recall is the percentage of present leaks that are detected.



Table 2: Comparisons on inter-app ICC analysis with DroidBench 3.0, DroidBench (IccTA branch), and ICC-Bench. Multiple circles in one
row means multiple inter-app collusions expected. An all-empty row: no inter-app collusions expected and none reported. †indicates the tool
crashed on that test case.
X©= a correct warning, *= a false warning,©= a missed leak, P©= a privilege escalation reported, ‡= did not test or N/A.

Source App Destination App # ICC Exit
Leaks (Dest.)

# ICC Entry
Leaks (Sink)

Privilege
Escalation COVERT

IccTA +
ApkCombiner

DIALDroid
(Ours)

DroidBench 3.0
SendSMS Echoer 1 3 X © © X© P©
StartActivityForResult1 Echoer 2 3 X ©© ©© X© X© P©
DeviceId_Broadcast1 Collector 2 1 X © ©† X© P©
DeviceId_ContentProvider1 Collector 2 1 X © ©† X©
DeviceId_OrderedIntent1 Collector 3 1 X © ©† X©
DeviceId_Service1 Collector 1 1 X © ©† ©
Location1 Collector 2 1 X ©© ©©† X© X© P©
Location_Broadcast1 Collector 3 1 X ©© ©©† X© X© P©
Location_Service1 Collector 2 1 X © ©† ©

Incorrect app pairings (172 *) ‡
DroidBench (IccTA branch)

startActivity1_source startActivity1_sink 1 2 X© X© X©
startSevice1_source startService1_sink 1 2 X© X© X©
sendbroadcast1_source sendbroadcast1_sink 1 2 X© X© X©

Incorrect app pairings (104 *) ‡
ICC-Bench

implicit_action implicit_src_sink 1 1 X© ©† X©
implicit_action implict_nosrc_sink 1 1 X© © X©
implicit_mix1 implicit_mix2 1 1 © ©† X©
implicit_mix2 implicit_mix1 1 2 X© ©† X©
implicit_src_nosink implicit_src_sink 1 1 X© © X©
implicit_src_nosink impliict_nosrc_sink 1 1 X© © X©
implicit_src_nosink implicit_action 1 1 X© © X©
impilicit_src_sink implicit_action 1 1 X© ©† X©
impilicit_src_sink implicit_nosrc_sink 1 1 X© © X©

Incorrect app pairings (47 *) ‡
Sum, Precision, Recall, and F measure

True positive ( X©), higher is better 11 3 22
False positive (*), lower is better 323 0‡ 0
False negative (©), lower is better 12 20 2
Precision, p = X©/( X©+*) 3.3% 100%‡* 100%
Recall, r = X©/( X©+©) 45.8% 12.5% 91.2%
F-measure = 2pr/(p+r) 0.06 0.22 0.95

* Since we were unable to execute IccTA+ApkCombiner on most of the pairs, it’s precision value is misleading and does not reflect it’s actual performance.

DIALDroid on Dataset II (Google Play apps). For each threat type,
we summarize our findings in Table 3. Because Google Play market
is known to deploy app vetting mechanisms (e.g., Google Bouncer),
it is reasonable to assume the apps in Dataset II have passed some
single-app screenings.

We found no collusive data leaks or privilege escalations based
on explicit intents, i.e., no inter-app ICCs of Threat Types I, II,
III. This result suggests that explicit intent based collusion is very
rare. (They might exist, but are out of the scope of our dataset.)
Therefore, collusion analysis needs to be focused on implicit intents
based ICCs, as opposed to explicit intents.

For inter-app ICCs via implicit intents, we distinguish three cases:
both collusive data leak and privilege escalation in Threat IV, priv-
ilege escalation without collusive data leak in Threat Type V, and
collusive data leak without privilege escalation in Threat VI. We
highlight some key results next. The most severe threat type is
Threat IV, where collusive data leak and privilege escalation occur
simultaneously. We found 16,712 app pairs originating from 33
sender apps that exhibit both collusive data leak and privilege esca-
lation behaviors via implicit intents. Because of the sensitive data
from the sender app is leaked externally by the receiver app and the
receiver app is under the disguise of having fewer permissions, apps
in Threat IV is the most serious.

It is not surprising that we observe a huge number (1,785,102) of

inter-app ICC channels with the privilege escalation threat in Threat
V. Some app pairs may have multiple ICC channels between them.
Interestingly, these 1,785,102 ICCs with privilege escalation threat
originate from only 62 problematic sender apps.

For Threat Type VI (collusive data leak without privilege esca-
lation), we found 6,783 such app pairs originating from 21 sender
apps. That is, these app pairs exhibit collusive data leak behaviors;
however, the receiver apps do not gain new permission privileges,
i.e., the receiver apps have the authorization to access the received
data. In addition, we found that a large number (20) of sender apps
in Threat Type VI are also sender apps in Threat Type IV. We per-
formed case studies for each of the Threat Types IV, V, and VI in
Section 4.3. Some cases in Threat Type VI suggest that the collusive
data leaks are unintentional.
Cases with HTTP and SMS Sinks: We want to identify the collu-
sive data leak cases (of Threat Types IV or VI) that exfiltrate the
sensitive information to remote destinations. We recompute the
results with a small set of relevant sensitive sink methods, namely
java.net.URL, android.telephony.SmsManager, and
org.apache.http.HttpResponse. For Threat Type IV, we
found 325 problematic app pairs with 16 distinct sender apps and 32
distinct receiver apps. There are a total of 1,054 Type IV ICCs. For
Threat Type VI, the numbers are smaller. We found 19 pairs, with
12 senders and 3 receivers, and a total of 63 problematic ICCs. Our



Table 3: Summary of problematic inter-app ICC channels in each threat category. Sender apps and receiver apps are from Google Play Market.
All the ICC channels shown are sensitive with ICC exit leaks in the sender apps (as defined in Section 2). Privilege escalation and collusive
data leak are defined in Section 2.

Categorization Results
Threat
Type

Collusive
Data Leak

Privilege
Escalation

Intent
Type

# of Distinct
Source App

# of Distinct
Receiver App

Total ICC
Channels

Total
App Pairs

I Yes Yes Explicit 0 0 0 0
II No Yes Explicit 0 0 0 0
III Yes No Explicit 0 0 0 0
IV Yes Yes Implicit 33 1,792 77,104 16,712
V No Yes Implicit 62 44,514 1,785,102 1,032,321
VI Yes No Implicit 21 1,040 34,745 6,783

case study in Section 4.3 gives an example SMS-based collusive
data leak.
Same-developer Privilege Escalations: We found 200 inter-app
ICCs with same-developer privilege escalation. Same developer
refers to that the sender and receiver apps have the same developer
name. All such cases belong to Threat Type V and are related
to location permissions (both fine and coarse). 194 ICCs appear
somewhat benign, as only the country name (getCountry())
is involved. However, the other 6 privilege escalation ICCs ap-
pear more serious. They involve 3 pairs of apps (1 pair from
Alamex Ltd and 2 pairs from NexTag Mobile) and specific locations
(getLastKnowLocation()). Our case study in Section 4.3
gives an example of the same-developer privilege escalation cases.

4.3 Case Studies
Threat TYPE IV [escalation w/ collusive data leak]
1) com.ppgps.lite→de.ub0r.android.websms. The
source app provides the real-time flight information to the
pilots of paramotor, paraglider, glider or ultra light planes.
com.ppgps.PPGpSActivity retrieves a user’s location (i.e.,
getLastKnownLocation) and sends it via an implicit in-
tent (action = android.intent.action.VIEW, Mime-Type=
vnd.android-dir/mms-sms). The sink app lets a user
send free or low-cost SMS messages via various web services.
de.ub0r.android.websms.WebSMS defines an intent-filter
to accept the above intent. Upon receiving the intent, the WebSMS
activity retrieves and parses the data sent via sms_body field and
leaks it via SMS to a phone number. Since the sink app does not
have the permission to access location, it leads to both privilege
escalation and collusive data leak.
2) com.codalata.craigslistchecker→qubecad.-
droidtocad. The source app helps users search craiglist
worldwide. com.codalata.craigslistchecker retrieves
SIM serial number (i.e., getSimSerialNumber, permis-
sion =android.permission.READ_PHONE_STATE)
and sends via implicit intent (action=
android.intent.action.SEND, Mime-Type=plain-
/text). The sink app is a location recording app.
qubecad.droidtocad.activities.AddDocument-
Activity defines an intent-filter to accept the above intent. Upon
receiving the intent, the AddDocumentActivity activity retrieves and
parses the data sent via android.intent.extra.TEXT field
and leaks it to a log. Since the sink app does not have permission
to access phone state, it leads to both a privilege escalation and a
collusion.
Threat TYPE V [escalation w/o collusive data leak]
1) Same developer: com.nextag.android→com.thingbuzz.
Both apps are developed by the Nextag Mobile. The
sender app compares price across different e-commerce
sites. com.nextag.android retrieves the user’s

location(i.e., getLastKnownLocation, permission
=android.permission.ACCESS_FINE_LOCATION)
and sends that via an implicit intent (action =
android.intent.action.MAIN, category =android.-
intent.category.INFO/ android.intent.-
category.LAUNCHER). The receiver app, which provides
shopping advice to users, defines an intent-filter to accept the above
intent. However, com.thingbuzz does not have the permission
to access user’s location, this ICC communication leads to escalated
privileges.
2) Different developers: com.biganiseed.ladder.trial
→ ee.showm. The sender app provides a VPN connec-
tion. com.biganiseed.ladder.trial retrieves network
information (i.e., getActiveNetworkInfo, permission
=android.permission.ACCESS_NETWORK_STATE)
and sends that via an implicit intent (action =
android.intent.action.SENDTO). The receiver app,
which controls EE TV, defines an intent-filter to accept the above
intent. However, ee.showm does not have the permission to
access network information, this ICC communication leads to
escalated privileges.
Threat TYPE VI [collusive data leak w/o escalation]
com.ccmass.fotoalbumgpslite→com.ventri.cake-
.retrica. The sender app organizes photos
based on the locations where photos were taken.
com.ccmass.fotoalbumgpslite retrieves user’s loca-
tion (i.e., getLatitude and getLongtitude, permission
=android.permission.ACCESS_FINE_LOCATION)
and sends that via an implicit intent (action =
android.media.action.IMAGE_CAPTURE). The receiver
app, which takes photos with various filters, defines an intent-filter
to accept the above intent. Since com.ventri.cake.retrica
have the permission to access location information, this ICC
communication does not lead to escalated privileges. But upon
reception, com.ventri.cake.retrica leaks the data to a log
and therefore causes a collusion.
Threat TYPE IV, V, VI [vulnerable sender app]
App com.koranto.mkmn provides prayer times for
Muslims around the world. The MainActivity of
com.koranto.mkmn.activities retrieves the user’s
location (i.e., getLastKnownLocation, permission
=android.permission.ACCESS_FINE_LOCATION)
and sends it via an implicit intent (ac-
tion=android.intent.action.SEND, MimeType =
text/plain).

We found 1,540 receiver apps that can possibly accept this intent.
Among those possible receivers, 32 apps and the resulting inter-
app ICCs exhibit both collusive data leak and privilege escalation
behaviors (Type IV), 839 apps and the resulting ICCs exhibit only



privilege escalations (Type V), and 7 apps and the resulting ICCs
exhibit only collusive behaviors (Type VI).

For example, br.com.coderev.acumapa, which provides
an acupuncture map overlaid on the image captured by the camera,
can receive this intent and write the retrieved location information to
a file (Type IV). do.adoubleu.toy, which is an integrated diary
and messenger app without access to user’s location, can accept this
intent (Type V). com.du.android, which is a to-do list manage-
ment app with access to user’s location, can accept this intent, extract
location information sent via android.intent.extra.TEXT,
and leak it to a log (Type VI).

It is extremely challenging for us to infer the true intentions
behind these implicit-intent based collusive data leak or privilege
escalation behaviors. Is the developer’s intention malicious (e.g., for
deliberately evading detection or stealing sensitive data) or benign
(e.g., due to poor programming practices)? We further discuss the
security implications in Section 5.

4.4 Statistics on ICC Exit and Entry Leaks
For Dataset III, the number of sender apps with ICC exit leaks

is an order of magnitude fewer than the number of receiver apps
with ICC entry leaks. Specifically, DIALDroid identified a total of
30,453 ICC exit leaks that are caused by 3,372 sender apps (3.06%
of the total apps). DIALDroid identified a total of 249,263 ICC
entry leaks that are caused by 32,855 receiver apps (29.82% of the
total apps).

Out of the 3,372 sender apps with ICC exit leaks, 1,792 of them
(≈ 1.62% of total apps) initiate sensitive ICC channels (more in-
formation in Section 4.5). Although it does not necessarily mean
that the remaining apps are threat-free, as they may communicate
with apps outside of our dataset, the number of problematic sender
apps is somewhat surprisingly small. However, because of the use
of implicit intents in the inter-app ICCs, these 1,792 sender apps
generate millions of ICC links (presented in Section 4.5).

Figure 1 in the appendix shows the percentages of leaking apps
out of each app category. For Google Play apps, Personalization has
the highest percentage of apps with ICC exit leaks (in sender apps),
which is only slightly lower than the Virus Share category. For ICC
entry leaks in receiver apps, the percentages are rather high across
all the Google Play app categories, with Photography and Business
being the highest.

4.5 Statistics on Sensitive ICCs
For Dataset III, DIALDroid found 5,715,046 (≈ 5.7 million)

potentially sensitive ICC channels. Most of the (≈ 99.6%) sensi-
tive ICC channels are inter-app, and the rest are intra-app. These
sensitive ICC channels originate from only 1,792 apps.

Table 4 shows how the sender apps involved in sensitive ICC
channels or collusive data leaks are distributed across different app
categories for Dataset III. Intuitively, this table summarizes the
problematic sender apps and their categories. We highlight the
categories with at least one percentage over 7%.

For Google Play apps, Transportation (11.18%) and Travel &
Local (9.05%) apps initiate the most sensitive ICC channels, which
is most likely due to passing the user’s location information to
another app. In contrast, this category has a relatively low percentage
of collusive data leak cases, which indicates the location or other
sensitive information being passed is likely consumed by the receiver
app, as opposed to being leaked via disk output or network output.
Personalization and entertainment categories have high percentages
of problematic sender apps for both types of inter-app ICC threats.

In comparison, sender apps from Virus Share are involved in
a substantially higher number of detected sensitive ICC channels

Table 4: The distribution of sensitive ICC channels and collusive
data leaks among app categories for Dataset III. An app may have
multiple sensitive ICC channels.

Category
% of
total
Apps

% sensitive
ICC

channels
(origin)

%
collusive

data
leaks

(origin)
Books & Reference 7.40% 0.01% 0.00%
Business 5.40% 0.00% 0.00%
Comics 1.87% 0.00% 0.00%
Communication 0.05% 0.05% 0.04%
Entertainment 7.43% 4.49% 8.97%
Lifestyle 6.69% 0.03% 0.11%
Medical 1.64% 0.00% 0.00%
Personalization 6.75% 17.09% 13.31%
Photography 7.30% 4.33% 6.35%
Productivity 6.88% 0.01% 0.59%
Shopping 5.75% 2.16% 1.57%
Social 6.24% 3.23% 1.84%
Sports 6.40% 2.14% 4.41%
Tools 7.36% 2.66% 7.16%
Transportation 5.74% 11.18% 3.29%
Travel & Local 3.04% 9.05% 0.02%
Virus Share 9.03% 43.18 % 52.33%

Table 5: Top permissions leaked via privilege escalation in Dataset
III.

Permission # Cases
android.permission.ACCESS_FINE_LOCATION 1,155,301
android.permission.ACCESS_COARSE_LOCATION 1,163,769
android.permission.READ_PHONE_STATE 880,645
android.permission.ACCESS_WIFI_STATE 433,887
android.permission.ACCESS_NETWORK_STATE 486
android.permission.BLUETOOTH 153
Total: 3,634,241

and collusive data leaks, which is expected. Although they account
for 9.03% of the apps in Dataset III, 43.18% of the sensitive ICC
channels and 52.33% of the collusive data leaks are originated from
apps in Virus Share. The high percentage (52.33%) of collusive data
leaks originating from malware apps indicates that malware apps
actively seek and transfer sensitive information.

4.6 Permission and Method Distributions
Table 5 shows the number of different permissions leaked via all

privilege escalation scenarios for Dataset III. Recall that Dataset III
includes Google Play apps and apps from Virus Share. The results
suggest that user’s location, device information, and current cellular
network information are overwhelmingly more likely to be trans-
ferred to apps that do not have corresponding access permissions.
The permission ACCESS_NETWORK_STATE gives the app autho-
rization to access NetworkManager to monitor network connections,
which is useful for device fingerprinting. Similarly, the permission
ACCESS_WIFI_STATE provides the access to WifiManager and
can be used for fingerprinting.

Table 6 (first two columns) shows the most common sen-
sitive source methods in collusive data leak cases in Dataset
III. Methods to uniquely identify a user (i.e., getDeviceId,
getConnectionInfob and getSubscriberId) are
the most common sources of ICC leaks. Other com-
mon sources include methods to retrieve a user’s location



(i.e., getLastKnownLocation, getLatitude, and
getLongtitude). Similarly, Table 6 (last two columns) shows
the most common sensitive sink methods. SharedPreferences
and Log are the mostly used for collusive data leaks. Other APIs
are related to file, network, and SMS. In Section 5, we discuss how
relaxing sensitive source and sink definitions impacts the results.

Table 6: Top sensitive source and sink methods involved in collusive
data leaks in Dataset III.

Sensitive Source % Sensitive Sink %
getDeviceId 36.69% android.content.SharedPrefs 49.0%
getConnectionInfo 33.44% android.util.Log 48.3%
getSubscriberId 4.36% java.io.OutputStream 1.1%
getLastKnownLocation 4.32% java.net.URL 0.9%
getLongitude 4.18% java.io.FileOutputStream 0.7%
getLatitude 4.03% org.apache.http.HttpResponse 0.1%
getSimSerialNumber 3.09% android.telephony.SmsManager 0.03%
getLine1Number 2.78%
getActiveNetworkInfo 2.10%
getCountry 1.35%
others 3.65%

4.7 Unintended ICCs & Inaccurate Manifests
The main source of false positives in our detection is unintended

ICCs with mismatched data types. We randomly selected 10 app
pairs (4 of Type IV, 5 of Type V, and 1 of Type VI) and manually
investigated their decompiled source code. The pairs have distinct
receiver apps. We found 5 receiver apps overclaim the types of data
it can receive in their Manifest files. For those apps, the sensitive
intents pass our static action test, category test, and data test, which
are equivalent to Android’s runtime tests. However, the code in the
receiver app is not designed to process the sensitive incoming intent.
At runtime, the receiver app may crash or simply do nothing. For
example, for a pair with Threat Type IV, we found that the source
app com.americos.selfshot sends implicit intent with data
field “android.intent.extra.TEXT" containing user’s device ID. How-
ever, the code in a matched receiver app qubecad.droidtocad
assumes the data field in the incoming intents to be file paths. This
suggests that this inter-app ICC is not intended. Unintended ICCs
with mismatched data types may lead to false positives.

The fundamental reason for these false positives is loose or no
restrictions on incoming data in the receiver app’s Manifest file.
If the format of incoming data is not well specified, then Android
system is likely to assume the receiver app can receive all types of
data at runtime. Judging based on our manual analysis, such cases
are quite common. We discuss this issue further in Section 5.

4.8 Runtime on 110K Apps
For scalability evaluation, we measure how long DIALDroid-

takes to analyze our largest dataset, Dataset III with 110,150 apps.
We used four virtual machines, each with 4 processor-cores, 64GB
RAM, and 1 TB hard drive to analyze the apps. We stored the
results to a MySQL database hosted on a server with an eight-core
processor and 80GB RAM. The ICC Leak Calculator module of
DIALDroid computed all the sensitive ICC channels among the
110,150 apps in 82 minutes. This computation is fast, because al-
though the total number of ICC links is huge, the percentage of
sensitive ones is extremely low (about 0.57% as estimated by our
experiment. 15 Non-sensitive entries are not touched in the computa-
15 We first computed all the possible ICC links originating from

1,000 randomly selected applications and obtained ≈ 21.8 mil-
lion ICC links originating from those 1,000 apps. Among those
≈ 21.8 million ICC links, only 124K (≈ 0.57%) ICC links were
sensitive, i.e., sensitive ICC channels as defined in Section 2.
The rest of them do not carry sensitive data.

tion. Our relational database schema is efficient and consumes only
6.3 GB space for storing the information for 110,150 apps.

DIALDroid was able to analyze more the 80% of the apps within
five minutes. The average analysis time per app was 3.45 minutes.
Figure 3 in the appendix shows the distribution of analysis time
for the applications. Adding the individual analysis time for each
app (i.e., as if all the apps were analyzed on a single machine),
DIALDroid took a total of 6,339.6 hours to analyze the 110,150 apps.
DIALDroid was able to complete 83.6% of the apps with a high
precision configuration within five minutes (Section 3.2). For 10.7%
of the apps, DIALDroid timed out in high precise configuration but
was able to analyze successfully within five minutes when retried
with a low precision configuration (Section 3.2). For the remaining
5.7% of the apps, DIALDroid failed to complete the analysis within
the specified execution limit (20 minutes). Table 7 in the appendix
shows statistics of the apps and our program analysis.
New benchmark released. In order to validate the detected col-
lusion pairs and privilege escalations, we inspected the taint paths
reported by DIALDroid. We further validated the leaks through man-
ual inspections on the code. We converted the .apk files to .jar
files using the dex2jar 16 tool. We decompiled the .jar files to
Java source code using a Java decompiler17. We manually inspected
the source codes to verify leaks. Based on our manual verifica-
tion, we have compiled a benchmark suite, DIALDroid-Bench18, to
test inter-app collusion. Currently, the suite contains 30 real-world
apps from the Google play. To our knowledge, this is the first such
benchmark using real-world apps, as opposed to proof-of-concept
apps.

5. DISCUSSION AND LIMITATIONS
Unintentional leaks and escalations. Although the reported collu-
sive data leak and permission escalation cases may be unintentional
(e.g., due to insecure design or poor development practices), these
apps still pose threats to user’s sensitive data and device. Sev-
eral lessons can be learned by developers in order to prevent or
reduce such threats. ICC sender apps should avoid transferring
sensitive data through Activity or Service based implicit in-
tents. Permission checking is needed for Broadcast intent with
sensitive information. Whenever possible, explicit intents are pre-
ferred for communicating sensitive data between apps. For receiver
apps, enforcing strict restrictions for each entry point (e.g., add
pathPattern in intentFilter) reduces unintended and un-
expected ICCs.
Sensitive source and sink definitions. The choice of sensitive
source and sink impacts the number of reported ICC anomalies. A
smaller set of sensitive sources and sinks generates a smaller number
of alerts. For example, as shown in Table 6, android.util.Log
accounts for 48.3% of the sensitive sinks (in receiver apps) in the
detected ICC leaks. When excluding both Log and SharedPrefer-
ences from the sensitive sink list, our query returns a much reduced
number (15,109) of collusive ICC links.

Our sensitive sources and sinks definitions follow SuSi [31],
which includes Android logging and SharedPreferences. In the
latest Android OS, the logged information is visible only to the app
itself, which reduces its risk. However, advanced logging-based
exploits (e.g., LogCat and CatLog) are still possible. Thus, our
evaluation includes logging as a sensitive sink in our evaluation.
SharedPreferences are key-value pairs maintained by the Android
system. An app can read and write the value associated with the

16 https://github.com/pxb1988/dex2jar
17 http://jd.benow.ca/
18 https://github.com/dialdroid-android/dialdroid-bench/



key. There are three modes for SharedPreferences: private (i.e.,
accessible only by the owner app), world-read (i.e., others can read),
and world-write (i.e., others can read and write). In virtually all
taint analyses, SharedPreference is labeled sensitive. Even if it is
configured as private, other components of the same app can access
it resulting in sensitive data flows.

The advantage of DIALDroid is that its database backend al-
lows security analysts to easily adjust and customize sensitivity
definitions to refine query results. In Section 4.2, we show the
recomputed results with a much smaller sink set consisting of
java.net.URL, android.telephony.SmsManager, and
org.apache.http.HttpResponse.
App chain length. Three or more apps can possibly create a chain
with ICC links to leak data. For example, three apps, A, B, and C,
create an ICC chain, where app A transfers sensitive information to
appB via an ICC exit leak; appB then leaks that information to app
C. A chain of three or more apps is a special case of two app-based
ICC collusion, where the receiver app leaks data extracted from
an intent by initiating another ICC (i.e., ICC entry leak with ICC
initiation methods as sink). Therefore, DIALDroid reports A→B
link described above as an inter-app collusion.

Among the three benchmarks evaluated in Section 4, DIAL-
Droid identified following two scenarios in the ICC-Bench, where
three components work together to leak sensitive information.

1. implicit5.MainActivity → implicit5.FooActivity →
implicit5.HookActivity

2. implicit6.MainActivity → implicit5.FooActivity →
implicit5.HookActivity

Although we did not find any chain of more than two components
among the 110K real-world apps, DIALDroid is capable of identify-
ing such chains.
Risk prioritization. Security analysts need usable tools to prioritize
the investigation of reported threats. Because of the quadratic growth
of possible inter-app ICCs in the number of apps, this prioritization
is a key to the usability. Relaxing the definitions of sensitive sources
and sinks (i.e., smaller sets) reduces the number of alerts generated.
In addition, quantitative metrics can be developed to prioritize the
risks based on the type of inter-app sensitive ICC flows, through
machine learning methods. PRIMO [26] can also be utilized to
triage the ICC links detected by DIALDroid.
User applications. Although DIALDroid is for marketplace own-
ers, Android users can also benefit from this tool. For example,
enterprise users can check possible inter-app collusions using DI-
ALDroid before allowing certain apps to be installed on the devices
of their employees. Moreover, a large-scale public database similar
to ours, when regularly updated, can be queried by users to find out
possible inter-app communications to or from a particular app.
Limitations. Existing static analysis approaches are ineffective
against the unintended ICCs problem caused by mismatched data
(described in Section 4.7). The reason is that one needs to infer
the intended data type that an app sends or receives based on how
the code preceding or following an ICC. Such static semantic code
inference is challenging and remains an open problem.

Similar to most other approaches based on static analysis, our
approach shares some inherent limitations. For example, DIAL-
Droid can resolve reflective calls only if their arguments are string
constants. As mentioned in Section 3.3, since our strict intent
matching rules ignore overapproximated regular expressions, DIAL-
Droid may fail to compute some ICC links.

As we have mentioned in Section B.1, DIALDroid loses field
sensitivity when intent objects carrying sensitive information goes
through ICC channels, which can result in false positive collusion

identification. DIALDroid uses a regular expression string search
within the ICC entry leak path for the source data keys. As we en-
countered in startActivity6 test case, this search may return
false positives if the path contains any string that contains the key as
a substring. We manually inspected 30 taint paths from real-world
collusion pairs identified in our study and did not observe any such
occurrence.

To enable large scale analysis, we limited our analysis time per
app. Although DIALDroid failed to analyze only 5.7% of the appli-
cations within allocated time (i.e., 20 minutes), there is a possibility
that some of those applications could cause collusions.

6. RELATED WORK
Collusion and privilege escalation. Davi et al. were the to de-
scribe the possibility of privilege escalation attacks in Android [10]
and Marforio et al. gave a comprehensive description of possi-
ble collusion channels, including inter-app ICC [24]. Later Com-
Droid provided the first comprehensive analysis of inter-app ICC
based threats, including broadcast theft and activity hijacking [9].
Since ComDroid analyzed individual apps, it’s results may over-
approximate the number of sensitive inter-app ICC flows, regardless
of how the data is consumed by the receiver app. In comparison,
our pairwise analysis performs end-to-end data-flow analysis, which
is more fine-grained. Requiring the receiver app to have ICC entry
leaks (as defined in Section 2) reduces the number of false positives
(i.e., false alarms) allowing security analysts to better prioritize their
investigation.

Elish et al. pointed out that collusion detection solutions may
suffer from high false positives without in-depth pairwise data-flow
analysis [13]. Researchers pointed out a third type of inter-app
ICC attacks besides collusions and privilege escalation, called pri-
vate activity invocation due to the misconfiguration of the intent
scopes [33]. A recent study also reported the presence of collu-
sive attacks to promote the rankings of apps in the Chinese Apple
marketplace [8].
Single-app security. For static analysis on single apps, many
general-purpose solutions such as DroidSafe [15] and Aman-
droid [35] can identify sensitive data flows. Researches have also
proposed several other techniques for specific detection purposes.
For example, CHEX [23] is focused on detecting data flows that
enable component hijacking within a single app. AppIntent uses
symbolic execution to determine whether a data transmission is
intended by the user through analyzing its compatibility with the
required GUI-operation sequences [39]. AAPL [22] utilizes peer
voting for privacy leakage detection together with data-flow anal-
ysis. Wolfe et al. uses supervised learning to classify malware
families [36].

Several researchers have also used dynamic program analysis
for screening single apps. TaintDroid [14] dynamically tracks the
information flows and detects privacy leaks through Android system
instrumentation. INTENTDROID [16] utilizes debug breakpoints to
dynamically detect the unsafe handling of incoming messages to
identify possible component hijacking. IntentFuzzer uses fuzzing
framework to identify exposed and vulnerable interfaces [38]. Intel-
liDroid aims to generate inputs for dynamic analysis [37].
App-pair security. Most of the dynamic analysis solutions modify
Android system to enforce security policies to prevent inter-app
threats. XmanDroid is the first among such tools to demonstrate
runtime collusion detection by enforcing policies on the combined
permission set of app-pairs [5]. FlaskDroid enforces mandatory
access control policies to prevent privilege escalation and collusion
attacks [7]. IntentScope enforces security policies during dynamic
intent forwarding [17].



However, these dynamic analysis based solutions are designed
to analyze a small set of apps (e.g., ones that are installed on the
same phone). However, these approaches do not scale to hundreds
of thousands of apps. In comparison, our solution is designed for
security analysts who maintain large-scale app marketplaces or even
medium-scale proprietary marketplaces owned by an organization
for its employees, e.g., only approved apps from the internal app
marketplace are allowed to be installed.

Among the static analysis based solutions, IccTA+ApkCombiner
uses a straightforward approach by two apps into a single app (e.g.,
using ApkCombiner [20]) and then apply the existing single-app
static analysis (e.g., IccTA [21]) to identify inter-app threats. How-
ever, this approach performs a large number of redundant program
analyses, which significantly slows down the computation as shown
in our experiments. Our evaluation also shows that the combination
mechanism of ApkCombiner is fragile and failed on majority of the
app-pairs. DidFail [19] and COVERT [4]) perform the data-flow
analysis only once per app. COVERT uses formal methods (namely
model checking) to detect suspicious inter-app ICC flows [4] but
we found COVERT’s formal model generation process fragile and
having low scalability. DidFail [19] uses an approach very similar
to us, however the intent resolution and intent-matching process of
DidFail performs poorly. Moreover, DidFail did not enforce security
policies to reduce the search space (e.g., we only match intents
that can potentially carry sensitive information), and therefore is
not scalable. Finally, DidFail does not limit dynamically adjust the
precision of static taint analysis, therefore often fails to complete
analysis of apps even after long time. In comparison, we implement
a pragmatic adaptive mechanism that dynamically determines the
accuracy-performance tradeoff during static taint analysis. FUSE
is aimed towards single-app analysis, but can be extended to build
a multi-app information-flow graph [32]. FUSE’s intra-procedural
string analysis is limited and error-prone. Existing inter-app analysis
tools were evaluated on tens or hundred of apps and none of the
tools were evaluated on 110K apps like DIALDroid.

PRIMO estimates the likelihoods of inter-app ICC connections
using a probabilistic technique and provides ICC-link probabilities
computed based on empirical evidence [26]. Although PRIMO is
not designed to be a complete ICC security detection tool, it provides
useful complementary information to security analysts to focus on
the risky ICCs that are the most likely to occur in practice.
Others. Researchers proposed automatic patch generation for mit-
igating hijacking [41]. Similarly, applying third-party security
patches for privilege escalation and capability leaks was proposed
by Mulliner et al. [25]. Kantola et al. developed a heuristic policy to
guide developers in writing safer apps [18]. Zhang et al. proposed
monitoring network activities to identify stealth malwares [40].

7. CONCLUSIONS AND FUTURE WORK
We reported our findings in a large-scale inter-app ICC analy-

sis for detecting collusions and privilege escalations. Accuracy
and scalability are our key features, which we achieved through a
new general-purpose Android intent resolution tool, database query
systems, and pragmatic program-analysis execution management.
Besides superior accuracy and runtime compared with state-of-the-
art solutions, our analysis produces a number of real-world collusive
data leak and privilege escalation pairs and a myriad of interesting
statistics on ICC security. We have open-sourced our entire tool-
suite on GitHub19 and have made our database available20 for other
researchers.

19 https://github.com/dialdroid-android/
20 http://amiangshu.com/dialdroid/
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APPENDIX
A. ALGORITHM PSEUDOCODE

Algorithm 2 DIALDroid’s algorithm for computing ICC leaks to /
from an Android app

1: System DIALDROID(apkFile) . Input: An Android apk file to analyze

2: . Subsystem: ICC Entry / Exit Point Extractor
3: permissions← extractPermissions(apkFile)
4: entryPoints← extractIntentFilters(apkFile)
5: exitPoints← identifyExitPoints(apkFile) . static analysis to

determine the attributes of intents passing through the ICC exit points

6: . Subsystem: Dataflow Analyzer
7: timeout← 300s
8: try then
9: iccExitLeaks ← identifyICCExitLeaks(apkFile,

timeout, preciseConf) . static analysis to identify ICC exit leaks
with a high precise configuration

10: catchTimeoutException
11: iccExitLeaks ← identifyICCExitLeaks(apkFile,

timeout, lessPreciseConf) . precise configuration failed, try a
less precise configuration

12: end try

13: try then
14: iccEntryLeaks ← identifyICCEntryLeaks(apkFile,

timeout, preciseConf) . static analysis to identify ICC entry leaks
with a high precise configuration

15: catchTimeoutException
16: iccEntryLeaks ← identifyICCEntryLeaks(apkFile,

timeout, lessPreciseConf) . precise configuration failed, try a
less precise configuration

17: end try

18: . Subsystem: Data Module
19: appId ← saveToDatabase(permissions, entryPoints,

exitPoints, iccExitLeaks, iccEntryLeaks) . aggregate the data
extracted by the Entry/Exit point extractor and Dataflow analyzer, and store in
the DIALDroid db

20: . Subsystem: ICC Leak Calculator
21: calculateICCLeaks(appId) . compute ICC leaks to/from this app
22: end System

B. ADDITIONAL RESULTS
On average, an app in Dataset III accesses≈ 7 sensitive APIs and

invokes≈ 13 ICC calls. Results of Kruskal-Wallis tests suggest that
some categories of apps access a higher number of sensitive APIs
(χ2 = 5907.9, df = 16, p < 0.001) or make a higher number of
ICC calls (χ2 = 3841.5, df = 16, p < 0.001). Malware apps (in
Virus Share) access a higher number of sensitive APIs or to invoke
more ICC methods, as expected.

B.1 Intra-app ICC Comparisons
We compare DIALDroid with four leading single-app ICC tools

(Amandroid, IccTA, DroidSafe, and COVERT). The comparison is
conducted on 44 intra-app ICC test cases from the three benchmarks.
Table 8 shows the accuracy results of the five tools against the 44
intra-app test cases in three benchmarks. DIALDroid has the highest
precision (94.1%), the third highest recall (74.4%), and the highest F-
measure (0.83) among the five tools in our experiment. IccTA’s intra-
app detection accuracy is comparable to DIALDroid. DroidSafe
achieves the highest recall (100%) supporting its claim regarding
the most precise Android life cycle modeling. However, DroidSafe
appeared weak on intent resolution. It reports the highest number
of false positives (36). Amandroid missed the most on the leaks
against the Service and Provider related test cases, suggesting likely
insufficient lifecycle modeling for those two types of components.

Algorithm 3 Calculate sensitive ICC Channels to / from an app

1: Procedure CALCULATESENSITIVECHANNELS(appId) . Computing sensitive
ICC channels to / from the app identified by appId

2: appAsSrc← getAppIntentsWithExitLeaks(appId)
3: allLeakingIntents← getAllIntentsWithExitLeaks()
4: appIntentFilters← getAppIntentFilters(appId)
5: allIntentFilters← getAllIntentFilters()

6: sensitiveChannels← array(, )
7: for all intent in appAsSrc do . computing sensitive channels originating

from this app
8: for all filter in allIntentFilters do
9: if match(intent,filter) then

10: sensitiveChannels.append(intent.exit, filter.entry)
11: end if
12: end for
13: end for

14: for all intent in allLeakingIntents do . computing sensitive channels ending
at this app

15: for all filter in appIntentFilters do
16: if match(intent,filter) then
17: sensitiveChannels.append(intent.exit, filter.entry)
18: end if
19: end for
20: end for

return sensitiveChannels

21: end Procedure
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Figure 1: Percentages of apps out of each app category have ICC
exit leaks (left) or ICC entry leaks (right) in Dataset III.

COVERT had the poorest accuracy among the five tools, indicating
inaccurate implicit intent matching as well as inadequate Android
life cycle modeling.

We manually inspected the cases where DIALDroid failed. DI-
ALDroid primarily failed to recognize two types of data leaks. One
is via fake service calls, e.g., bindService2, bindService3,
and bindService4 that leak data within the same component
using the onServiceConnected callback method. The
other is via static fields, e.g., ActivityCommunication1.
DIALDroid failed to recognize those leaks, due to the lack
of intents carrying sensitive information. The two false
positives (startActivity6, startActivity7) were
due to the loss of field sensitivity. E.g., the sender stores
sensitive information in a field with a key = DroidBench
(e.g., intent.putExtra("DroidBench",IMEI))
but the receiver leaks DroidBench2 (e.g.,
Log.i(intent.getStringExtra("DroidBench2")).
Due to the loss of field sensitivity, we performed a simple regular
expression string search for the key (i.e., in this case DroidBench)
in the ICC entry leak path. Since a search for ‘DroidBench’ will



Table 7: Statistics of our program analysis during the scalability
evaluation of DIALDroid with 110,150 real-world apps.

Category # Ana-
lyzed

High-
precise
config.

Less-
precise
config.

Time-
out

Books & Reference 8,146 83.7% 13.8% 2.5%
Business 5,949 72.7% 18.0% 9.3%
Comics 2,057 80.5% 16.7% 2.8%
Communication 5,632 77.5% 13.1% 9.4%
Entertainment 8,189 77.4% 16.7% 5.9%
Lifestyle 7,368 76.6% 17.5% 5.9%
Medical 1,801 81.5% 13.6% 4.9%
Personalization 7,435 84.7% 14.1% 1.2%
Photography 8,041 79.5% 16.6% 3.9%
Productivity 7,582 82.6% 12.8% 4.6%
Shopping 6,336 77.1% 15.3% 7.6%
Social 6,870 71.4% 20.8% 7.8%
Sports 7,047 78.1% 16.2% 5.7%
Tools 8,105 85.0% 12.1% 2.9%
Transportation 6,323 81.9% 12.7% 5.4%
Travel & Local 3,344 73.8% 18.5% 7.5%
Virus Share 9,944 63.7% 26.5% 9.8%
Total*: 110,150 83.6% 10.7% 5.7%
*A few apps belong to multiple categories.
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Figure 2: The distribution of DIALDroid’s execution time for apps
in Dataset III.

match a string containing ‘DroidBench2’, DIALDroid reports the
above scenario as a leak.

We compare the execution time of five tools in Figure 3. The
average is computed from three executions, for each data point.
Only Amandroid’s execution time was better than DIALDroid. All
the tools, except Amandroid, are built on top of SOOT [34]. DI-
ALDroid has the fastest execution among the four SOOT-based
tools.
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Figure 3: Comparisons of the averaged intra-app execution time on
single-app benchmarks with four other state-of-the-art solutions.



Table 8: Intra-application ICC test results on DroidBench (develop branch), DroidBench (IccTA branch), and ICC-Bench. Multiple circles in
one row means multiple intra-app leaks expected. An all-empty row: no leaks expected and none reported. †indicates the tool crashed on that
test case.
X©= a correct warning, *= a false warning,©= a missed leak

Test Case # ICC Exit
Leaks

# ICC Entry
Leaks

Explicit
ICC COVERT Amandroid IccTA DroidSafe

DIAL-
Droid
(Ours)

DroidBench 3.0
ActivityCommunication1 1 2 © © X© X© ©
ActivityCommunication2 1 2 © X©* X©* X©* ©
ActivityCommunication3 1 5 © X© X© X©* X©
ActivityCommunication4 1 2 © X© X©* X©* X©
ActivityCommunication5 1 2 X © X© X© X©* X©
ActivityCommunication6 1 2 © X© © X©* ©
ActivityCommunication7 1 2 X © X© X© X©* X©
ActivityCommunication8 1 2 © X©* X©* X©* ©
BroadcastTaintAndLeak1 1 2 © © © X© X©
UnresolvableIntent1 1 2 ©© X© X© X© X© X© X© X© X©

DroidBench (IccTA branch)
startActivity1 1 2 X X© X© X© X©* X©
startActivity2 1 2 X © X© X© X©* X©
startActivity3 1 5 X © X© X© X©* X©
startActivity4 1 2 * **
startActivity5 1 2 **
startActivity6 1 2 X * * * ** *
startActivity7 1 2 X * * * ** *
startActivityForResult1 1 2 X X© X© X© X©* X©
startActivityForResult2 1 2 X X© © X© X© X©
startActivityForResult3 1 3 X © © X© X©* ©
startActivityForResult4 1 4 X ©© X©© X© X© X© X©** X©©
startService1 1 2 X X© X© X© X©* X©
startService2 1 2 X X© © X© X©* X©
bindService1 1 2 X X© © X© X©* X©
bindService2 1 0 X X© © X© X© ©
bindService3 0 0 X © © X© X© ©
bindService4 1 2 X X©© ©© X© X© X© X©* X©©
sendBroadcast1 1 1 X© © X© X©*** X©
sendStickyBroadcast1 1 1 © © X© X©* X©
insert1 1 2 © © ©† X©*** X©
update1 1 2 © © ©† X©*** X©
delete1 1 2 © © ©† X©*** ©
query1 1 1 © © ©† X©** ©

ICC-Bench
implicit_action 1 1 © X© X© X© X©
implicit_category 1 1 © X© X© X© X©
implicit_data1 1 1 © X© X© X© X©
implicit_data2 1 1 © X© X© X© X©
implicit_mix1 1 2 © X© X© X© X©
implicit_mix2 1 1 © X© X© X© X©
implicit_Src_Sink 1 1 © © © X© X©
explicit1 1 1 X X© X© X© X© X©
explicit_Src_Sink 1 1 X X© X© X© X© X©
dynamicregister1 1 1 © X© X© X© X©
dynamicregister2 1 1 © © © X© X©

Sum, Precision, Recall, and F measure
True positive ( X©), higher is better 11 24 35 43 32
False positive (*), lower is better 2 7 7 37 2
False negative (©), lower is better 32 19 8 0 11
Precision, p = X©/( X©+*) 83.3% 77.4% 83.7% 53.7% 94.1%
Recall, r = X©/( X©+©) 25.6% 55.8% 81.4% 100% 74.4%
F-measure = 2pr/(p+r) 0.39 0.65 0.82 0.70 0.83


