
Errors, Misunderstandings, and Attacks: Analyzing the
Crowdsourcing Process of Ad-blocking Systems

Mshabab Alrizah
The Pennsylvania State University

maa25@psu.edu

Sencun Zhu
The Pennsylvania State University

sxz16@psu.edu

Xinyu Xing
The Pennsylvania State University

xxing@ist.psu.edu

Gang Wang
University of Illinois at Urbana-Champaign

gangw@illinois.edu

ABSTRACT
Ad-blocking systems such as Adblock Plus rely on crowdsourcing
to build and maintain filter lists, which are the basis for determin-
ing which ads to block on web pages. In this work, we seek to
advance our understanding of the ad-blocking community as well
as the errors and pitfalls of the crowdsourcing process. To do so,
we collected and analyzed a longitudinal dataset that covered the
dynamic changes of popular filter-list EasyList for nine years and
the error reports submitted by the crowd in the same period.

Our study yielded a number of significant findings regarding the
characteristics of FP and FN errors and their causes. For instances,
we found that false positive errors (i.e., incorrectly blocking legiti-
mate content) still took a long time before they could be discovered
(50% of them took more than a month) despite the community ef-
fort. Both EasyList editors and website owners were to blame for
the false positives. In addition, we found that a great number of
false negative errors (i.e., failing to block real advertisements) were
either incorrectly reported or simply ignored by the editors. Fur-
thermore, we analyzed evasion attacks from ad publishers against
ad-blockers. In total, our analysis covers 15 types of attack methods
including 8 methods that have not been studied by the research
community. We show how ad publishers have utilized them to
circumvent ad-blockers and empirically measure the reactions of
ad blockers. Through in-depth analysis, our findings are expected
to help shed light on any future work to evolve ad blocking and
optimize crowdsourcing mechanisms.

ACM Reference Format:
Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors,
Misunderstandings, and Attacks: Analyzing the Crowdsourcing Process of
Ad-blocking Systems. In Internet Measurement Conference (IMC ’19), October
21–23, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3355369.3355588

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6948-0/19/10. . . $15.00
https://doi.org/10.1145/3355369.3355588

Ad-block Extension Default Filter List Firefox Chrome

Adblock Plus EasyList 11,054,048 > 100 million
AdBlock EasyList 1,329,314 > 40 million
uBlock Origin EasyList 4,861,128 > 10 million
Adguard AdBlocker AdGuard 337,776 5,641,143
AdBlocker Ultimate AdGuard 413,605 731,041
µBlock EasyList 98,894 884,482

Table 1: Number of active devices using Firefox and Chrome ex-
tension that have EasyList as a default filter-list in the first week of
January 2019. Note that AdGuard is based on EasyList [2].

1 INTRODUCTION
Ad-blocking systems are widely used by Internet users to remove
advertisements from web pages and protect user privacy from
third-party tracking. Today, over 600 million devices are using
ad-blocking systems around the globe [19].

Crowdsourcing is a crucial mechanism adopted by ad-blocking
systems to introduce new filter rules and mitigate filter errors. For
example, many popular ad blockers depend on a crowdsourcing
project called EasyList [21]. EasyList maintains a list of filter rules
that determine which ads to block. Among all the available filter
lists, EasyList has the largest user base [11, 47]. Table 1 shows
some popular Firefox and Chrome ad-blocking extensions that
depend on EasyList. As of the first week of January 2019, more
than 173 million active devices used EasyList for ad blocking [17,
49, 86]. Furthermore, Google uses ad-related URL patterns based
on EasyList to block ads on sites that fail the Better Ads Standards
(in Chrome for both desktop and Android version) [14].

To facilitate crowdsourcing, EasyList has established a large
community through which users can provide feedback and report
errors to the EasyList editors, who then update the ad-blocking
filters manually. These editors are a small group of EasyList authors
and ad-blocking experts. The editors collect feedback and reports
from the crowd using two different channels: public forums and
plug-in applications [21].

The evolution of ad-blocking systems has an influence on the
practices of both website owners and web users in multiple ways.
Therefore, a substantial amount of research has addressed ad-blocking
systems from a range of perspectives including those involving the
relationships among Internet users, ad publishers, and ad block-
ers [48, 53, 71, 89]. Other research has focused on the economic
ramifications of the ad-blocking systems [19, 78], potential comple-
mentary solutions [26, 83], and specific cases of ad blocking (e.g.,
tracker blocking, anti-adblocking) [25, 30, 46, 82]. However, there

https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3355369.3355588

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

remains a lack of deep understanding about how crowdsourcing
functions improve the filter-lists of ad-blocking systems over time,
and the potential pitfalls and vulnerabilities in this process.

In this paper, we focus on EasyList and present a measurement
study on the dynamic changes of the filter-list and the crowdsourc-
ing error reports over a period of nine years. We explored the
answers to a series of key questions. First, how prevalent are the
errors of blocking legitimate content, i.e., false positive (FP) errors,
and how prevalent are the errors of missing real advertisements, i.e.,
false negative (FN) errors? Second, what are the primary sources
of these errors? Third, how effective is crowdsourcing in detecting
and mitigating false positive and false negative errors? Fourth, how
robust is the filter-list against adversaries?

To answer these questions, we collected two large datasets that
covered the update history of EasyList and the behavior of the ad-
blocking community over the nine-year period fromNovember 2009
to December 2018. The resulting dataset contains a total of 55,607
versions of the filter lists. Over the nine years, there were 534,020
filters added and 448,479 filters removed by 27 editors to correct
both FP and FN errors. Additionally, we also crawled the feedback
reports submitted by users in the community. We collected 23,240
reports of FP and FN errors. Moreover, we analyzed 0.5 million
records of traffic history of 6,000 ad servers.

To effectively connect the first two datasets, we proposed and
utilized some tools and simulation methods to create and extract
real instances of FP and FN errors. Then, we performed an in-depth
analysis of the occurrence of both types of errors to understand
their causes and to evaluate the effectiveness of crowdsourcing for
error detection and mitigation. Based on the result, we analyzed
15 different type of attacks which aim to circumvent ad blockers,
including 8 new attacks that have not been systematically studied
by existing literature.

Our study yielded a number of significant findings regarding the
characteristics of FP and FN errors and their causes. First, a non-
trivial portion of the community effort was spent on addressing FP
errors (about 30% of the reports). Second, despite the community
effort, there was still a long delay of FP error discovery. More than
half of the errors persisted for over a month before they were re-
ported. Once reported, it took, on average, 2.09 days to push the
updates. Third, about 65% of the FP errors were caused by the “bad
signatures” added by the EasyList editors. However, the website
owners/designers made it worse by using already-blacklisted el-
ements for their web content design (accounting for 35% of the
errors). Fourth, FN errors were more likely to be rejected or ignored
by EasyList editors. Some of the reported FNs are not real errors.
For example, certain reporting users thought their ad blocker was
failing to block certain ads, but the true situation was that their
computers were infected by adware that was overwriting the ad
blocker and injecting ads.

Our study also provided insights into understanding the prac-
tical evasion efforts by ad publishers and website developers to
circumvent the ad-blocking systems and the countermeasures from
ad-blockers. We find 15 types of attack methods used in our dataset.
Among them, we analyzed 8 new attacks that have not yet been
systematically studied in previous works. Among the many things,
we find that only 60% of ad servers were influenced when their
domains were blocked by the EasyList. Ad networks aggressively

List B
Filter 1
Filter 2
Filter 3

a. Software
b. Filter Lists

List A
Filter 1
Filter 2
Filter 3

Internet Users Reports Filter List Editors

WWW

c. Community

Figure 1: Overview of ad-blocking system.

change their domains and ad elements and use new strategies to
achieve evasion. Our analysis shows that the countermeasures from
EasyList are often delayed or ineffective.

The key contributions of our work are as follows:
(1) We collected two large datasets from the ad-blocking commu-

nity to analyze the crowdsourcing process for ad-blocking
error detection and mitigation. We plan to share our datasets
with the research community.

(2) We presented an in-depth analysis of the accuracy of the
ad-blocking system and the updating behavior of the filter
list over 9 years. This analysis provides new insights into the
causes of false positive and false negative errors and their
impacts on websites.

(3) We presented a comprehensive analysis of the vulnerabilities
of the ad blocking system by illustrating 15 different evasion
methods and their empirical usage.

2 AD-BLOCKING DATASETS
Popular ad-blocking systems commonly have three main compo-
nents: (a) ad-blocking software, (b) a filter list, and (c) a community
of users who provide feedback to refine the filter list. As shown in
Figure 1, the ad-blocking software utilizes the filter lists to block ads
on web pages. The community, which consists of Internet users and
ad-blocking filter-list editors, has two leading roles: contributing
new filter rules and correcting errors caused by the filters. The
Internet users, who use ad-blocking systems, contribute to the filter
lists by reporting errors, while the editors respond by interpreting
and acting on that feedback in order to control the list. Very few
systems use hard-coded or fixed filter lists, which are typically less
popular and less effective for ad blockers. Therefore, we do not
consider them in this paper.

To perform the measurement study, we collected two datasets
from different sources. The datasets include 1) the nine-year history
of all versions of the EasyList filter list, and 2) users’ FP and FN
error reports for the same period. In the ad-blocking system, an
FP error is an instance when the filter incorrectly blocked a non-
advertisement element on a website, and an FN error is an instance
when the filter fails to block a real ad on a website. For our analysis,
we implemented multiple tools to collect and clean the datasets.

2.1 D1: EasyList Dataset
From November 30, 2009, to December 7, 2018, there were 117,683
versions of EasyList. The ad-blocking system updates EasyList when

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

the editors create a new version and push it to the remote repos-
itory. There are three reasons for updating EasyList: correcting
FP errors, correcting FN errors, or modifying the order/structure
of existing filter list. We will focus primarily on error correction
related updates.

We crawled the Mercurial repository that tracks the changes to
EasyList [45], which has the histories of updates back to November
2009. First, we tabulated the shortlog (commits) over the nine years
to build an index of changes. Second, we used the index to seed
an extractor of the EasyList changes. The extractor tracks the dif-
ferences between the old and new EasyList versions. This allowed
us to rebuild all the EasyList versions. Third, we focused on each
filter in the list and tracked the changes by building the image of
its lifetime.

Basic Data Cleaning. The biggest challenge for our analysis
is that we could not merely compare the differences between two
consecutive versions to detect the added or removed filters over
time. Below, we discuss the reasons and how we resolved the issues.

First, data synchronization problem. EasyList editors may not
always work in a synchronized way. After certain FP/FN errors
are reported, different editors may try to address the same error at
different times, leading to duplicated filters. We considered these
changes as the noise and removed them.

Second, temporally duplicated filters. Duplicated filters may tem-
porally exist in certain versions due to the operation of editors. For
example, EasyList once contained two filters: (1) missoulian.c-
om###PG_fb and (2) missoulian.com,theolympian.co-
m###PG_fb. Actually, the editor was trying to modify the first
filter by adding the website domain “theolympian.com” in the op-
tional field to specify the filter scope. Instead of directly modifying
the existing filter, the editor added the second filter in a new ver-
sion and then removed the first filter later. This led to duplicated
filters temporally existing in the list. For our analysis, we found
these cases and merged the versions. More specifically, we created
a record of each filter that indicates the time of the filter creation,
the time of the filter removal, and the time period between the
filter creation and removal (called filter lifetime). We leveraged
the commit messages of EasyList creation to identify the reason
for removing the filters. If the commit message indicated that the
reason was to remove duplication, then we skip the version of the
temporally duplicated filters.

Third, structure maintenance. Editors may reorder the filter list
and rebuild some filters’ syntax to create new versions (e.g., the
merge of the EasyList list and Fanboy list in 2011). Since these
changes are not related to FP/FN errors, we did not consider these
versions in our analysis.

With these complications in mind, we extracted the changes in
EasyList by applying a greedy algorithm. The idea was to do a look-
ahead-search to match with versions related to error corrections.

Dataset Statistics. After building and cleaning the dataset, we
obtained a total of 55,607 versions as our dataset D1. The number
of filters in each version increased almost linearly from 3,250 in
November 2009 to more than 73,000 in December 2018. Over the
nine-year period, there were 534,020 filters added and 448,479 filters
removed in order to correct FP and FN errors. Some filters were
added and removed more than once at different times. In total,

there were 27 editors who maintained the list according to the
crowdsourced reports.

2.2 D2: Crowdsourced Report Dataset
There are two channels for users to report errors to the EasyList
editors. First, a user can report an error by submitting a public report
on the EasyList forum [24]. Second, a user can submit the report via
a browser plug-in. A key difference between the browser plug-in
reports and the forum is that browser plug-in report is a one-way
communication— users submit the reports but never get replies or
feedback. Intuitively, for website owners/developers, they are more
likely to submit to the forum to interact with EasyList editors and
follow up on the error correction. In March of 2018, a few browser
extension developers started to use emails to communicate with
the reporters. Considering that such plug-in channels only started
very recently (and its data is not public), our data collection was
focused on the public forum that matched the period covered in D1.
A key benefit of forum reports is that EasyList editors usually reply
with the “new EasyList version” created to address the reported
issues, which is the key to answer our research questions.

In the forum, FN reports are entered under “Report unblocked con-
tent”, and FP reports are entered under “Report incorrectly removed
content”. Usually, errors related to the same website are grouped
in one topic titled by the domain name of that website. Each topic
might have a discussion thread with back-and-forth replies.

We built a crawler that collected all the available posts on the
forum. In total, we have 23,240 topics with at least one report; 17,968
topics are about FN errors, and 5,272 topics are about FP errors. We
refer to this dataset as D2.

3 METHODOLOGY
To analyze errors in EasyList, we first need to extract real FP and
FN errors from the noisy datasets. In the following, we present our
methodologies for information extraction.

3.1 Linking Reports with EasyList
To understand how crowdsourcing reports impact EasyList updates,
we first needed to link the two datasets. More specifically, we sought
to accurately identify which EasyList version was created as a
result of a given report. Our linking method was based on a few
observations. Under a crowdsourcing report, EasyList editors often
refer to the ChangeSet [44] links in the Mercurial repository. This is
a confirmation of the correction of an FN or FP error in the refereed
EasyList version. Similarly, users (reporters) also use the ChangeSet
links to refer to the filters or EasyList versions that caused the
errors, or the ones where the errors were solved.

Based on these observations, we scanned the collected forums’
topics and their threads/replies. We considered the post details if
they met the following requirements: (1) The reply had a Change-
Set link; (2) The reply was created by EasyList editors; (3) The
timestamp of the EasyList version in the ChangeSet link was after
the timestamp of the report; and (4) The time gap between the
timestamp of the EasyList version in the ChangeSet link and the
timestamp of the reply was within a day.

It is worth mentioning that there is a probability that an editor
corrected an error but did not reply to the reporter and confirm the

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

correction. In this case, there is no way for us to link the report
to the EasyList version. Moreover, the editor might return an old
ChangeSet link, which had been created more than a day before the
editor’s response or was created by another editor. In this case, we
do not have strong evidence that an EasyList version was created
in response to that, or to a similar report. The editors occasionally
returned an old ChangeSet link to indicate that an error has been re-
solved. Therefore, the inclusion criteria listed above were designed
to be conservative, and the successfully linked pairs selected by our
approach are trustworthy (manually confirmed).

After this step, we had 5,284 reports in total. There were 3,700
reports about FN errors submitted by 758 users and 1,584 reports
about FP errors from 801 users. The covered time span was from
November 2009, to December 2018. We call this sub-dataset asD2A.

3.2 Reproducing FPs
To deeply analyze FP errors, we simulated the errors using old
versions of EasyList and the web pages that were impacted. There
were challenges to simulate the errors and pinpoint the influenced
elements of the reported web pages.

Challenges of Reproducing FPs. Each website has a differ-
ent structure that varies over time. Consequently, many FP errors
occurred in the past do not exist in subsequent structures. This
was the first challenge we faced, and we used the Internet Archive:
Wayback Machine service [7] (Wayback Machine) to extract old
versions of the websites.

The second challenge was how to recognize elements impacted
by FP errors. Usually, EasyList simultaneously blocks and hides
more than one element on the same page due to multiple matched
filters. Sometimes it even filters out dozens of elements, the majority
of which are ads, making it an arduous task to distinguish between
true positives (TP) results and FP errors.

We identified the web page elements impacted by an FP error by
utilizing the difference between two successive EasyList versions:
the version that corrected the error and the version that was cre-
ated before it. We designed our method to identify the legitimate
elements that were falsely blocked by using a reverse method of ad
blocking. The essence of the idea is that each EasyList version has
its scope that depends on the scopes of its filters. When a new FN
error is encountered, a new version is created to expand the range
of EasyList to cover the ads in the page that has the error. For an
FP error, the scope of EasyList is shrunk by adding new exception
rule(s) or/and removing filter(s).

Identifying the Affected Elements by FP Errors. Next, we
introduce the detailed methodology to extract web page elements
impacted by an FP error (i.e., the EasyList filter). Let ϒ be the set
of elements that are affected by the bad filters (FP-error-causing
filters). In other words, ϒ represents legitimate elements that are
misidentified as ads. Let Zk be EasyList version k created to fix
an FP error. Let Zk−1 be the EasyList version immediately before
EasyList version k , which contains the false-positive-causing filters.
Here the goal is to identify ϒ by matching Zk and Zk−1 against the
affected web page.

First, we consider EasyList version k . LetN be the set of elements
in the web page and Fi (N) be a set of ad elements matched by filter i .
Typically, an EasyList filter may also match legitimate elements and

thus the filters often come with exception rules. Here, Ej (N) which
represents a set of non-ad elements matched by exception rule j
and overwrites the output of Fi (N). Using the EasyList version k ,
the blocked ad elements in the web page are:

S =
⋃
i ∈Zk

Fi (N) −
⋃
j ∈Zk

Ej (N)

Next, we backtrace to version Zk−1 where there are FP-error-
causing filters. To identify ϒ (the set of legitimate elements that
were incorrectly blocked by filters in version Zk−1), we preform set
subtraction between the set of elements blocked by Zk−1 and the
set of elements blocked Zk . As a result, legitimate elements blocked
by Zk−1 are:

ϒ =
©«

⋃
i ∈Zk−1

Fi (N) −
⋃

j ∈Zk−1

Ej (N)
ª®¬ − ©«

⋃
i ∈Zk

Fi (N) −
⋃
j ∈Zk

Ej (N)
ª®¬

To better explain the process above, we use a toy example. Sup-
pose Z1 is EasyList version 1, and Z2 EasyList version 2 created
to correct the FP error in version 1. A web page has elements N =
{n1,n2,n3,n4,n5,n6}. The ad elements are {n1,n2,n3}. Z1 has fil-
ters { f1, f2} and an exception rule {e3} that prevents n6 from being
blocked because it is not an ad element. As a result, suppose f1
blocks {n1,n2,n5} and f2 blocks {n3}. e3 excepts {n6} from being
blocked. Since n5 is not an ad, f1 causes an FP error.

In our toy example, Z2 is then created to correct the above FP
error by adding a new exception to the list: { f1, f2, e3, e4} where the
new rule e4 excepts {n5}. To find n5, we apply the above equation
ϒ = ({n1,n2,n3,n5} − {n6}) − ({n1,n2,n3,n5} − ({n5,n6}) = {n5}.
As illustrated above, {n5} is exactly the element affected by the FP
error.

In this way, we built a list of CSS selectors to identify the Docu-
ment Object Model (DOM) of ϒ that was used when we scanned
the Wayback Machine. We scanned 2,203 web pages from different
websites that were reported with FP errors in D2A.

Limitations of using Internet Archive. We are aware of the
potential limitations of Internet Archive[40, 41, 88]. Here, we want
to briefly discuss how such limitations affect our analysis. First, the
frozen ads problem. Because the archived webpages are no longer
“live”, the ads are frozen (i.e., not loading from the live source).
However, this does not impact our analysis since we focus on FP,
i.e., legitimate web elements blocked by EasyList filters, not the ad
elements. Second, the nearest-neighbor timestamp problem. It is
a known limitation that archived snapshots are incomplete. The
consecutive snapshots might have a big time gap in between. For
our analysis, we utilized the Wayback CDX Server API [66] to
check the nearest snapshot to our requested date to make sure the
dates are close by (309 web pages are eliminated due to the lack
of snapshots). Third, the absence of archived web page problem.
Certain web pages were not achieved due to the Robots Exclusion
Protocol [1] or the websites were low-ranked. We found 76 websites
in our analysis were not archived. Additionally, errors that could
only be triggered by logging-in were not simulated. Other issues
such as “archive-escapes destination” and “same-origin escapes” do
not apply to our context.

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Error Duration. The lifetime or duration of the FP error on
each website started when the error-causing filter matched the non-
ad element(s) on the website and lasted until the error was corrected.
Thus, we should be able to find the duration of the impacted element
on the website and the duration of error-causing filter on the filter
list. The overlap between these intervals until error correction is
the duration of an FP error.

To find the duration of each impacted element, we built a Java ap-
plication to scan all the snapshots of impacted websites. We utilized
the Wayback CDX Server API. The API enables complex queries
that return the list of web page snapshots captured by Wayback.
We used it to specify our queries, e.g., excluding permanent URL
redirections [18]. We removed 82 web pages that had permanent
URL redirection. We utilized the HtmlUnit, which is a “GUI-Less
browser for Java programs"[29]. It is hard to use Java applications to
emulate browser behavior, such as executing JavaScript. Therefore,
we used HtmlUnit to emulate parts of browser behavior, including
the lower-level aspects of HTTP and supporting JavaScript.

To find the duration of an error-causing filter, we used dataset
D1 to identify the time when the filter was added to EasyList. Still,
we could not directly identify the filter in each case. The predica-
ment was that there were 869 cases of EasyList editors creating
exception filters to correct the errors. That did not help the process
of recognizing which filter caused the problem. The exception fil-
ter overrode the error-causing filter in the scope of the impacted
filter. Thus, we built a Google Chrome extension to reproduce the
ad-blocking effect in various circumstances. The Chrome extension
is similar to the Adblock Plus extension, but it is fed with a specific
list. For each case, we fed the extension with the EasyList version
that was created directly before the version that was created to cor-
rect the error. Furthermore, we modified some filters to fit with the
archive.org website. In each snapshot of any website, archive.org is
the first party. For example, the URL of the snapshot of cnn.com in
May 2013, is

https://web.archive.org/web/20130531-
230746/http://www.cnn.com/

Filters like: /hads-$domain=cnn.com will not block anything
in this snapshot since the first party of snapshot is archive.org,
while http://www.cnn.com/ is the sub-domain. We changed
the domain of the filters that required indicating the first party in
each case to archive.org. Moreover, we used Webrecorder [84]
to replay web archives and activate dynamic scripts.

FP Instances. We ended up with 570 instances (out of 2,203)
that correctly emulated the FP errors. We analyzed each instance to
extract the element types and feature and indicate the filter cause
the FP error. This sub-dataset was designated as D2FP

3.3 Extracting FN Errors
EasyList depends on crowdsourcing to detect FN errors, which
happens when ads are not blocked as expected. Three main parts
need to be investigated in order to provide a pragmatic analysis: the
crowd contribution, the EasyList reaction, and the countermeasures
of ad publishers. Therefore, from dataset D2, we extracted such
information from FN error reports as the profiles of users who
reported the errors, the domains and explanatory words from titles,
the timestamps of posting, the outgoing links from the replies, and

the contents of replies. There were 17.9K FN reports submitted by
4,552 users who reported 12,866 websites.

We attempted to extract the rejected or incorrect FN reports. We
classified a report as a rejected report if one or more of the following
conditions were met: (1) The editors replied explicitly to reject the
report; (2) The editors indicated that the report was not applicable
because it was about FP errors or other issues such as adware; (3)
The report was insufficient and locked (if it was not replied to or did
not include the websites where the error occurred); (4) The editors
referred to a ChangeSet link that belonged to another filter list, or
responded with an old ChangeSet link and locked the thread; (5)
The topic was locked after the editor asked a question, but there
was no response from the reporter.

Conditions (4) and (5) were applied to posts with small threads,
because we cannot manually validate posts with many replies. We
found 3,750 reports that met at least one of these conditions. This
sub-dataset was designated as D2B.

We studied the explanatory words from the titles and the Change-
Set links to indicate the error types generally. The forum mainly
targets ad elements. However, we noticed in a previous stage that
some reports were about adware and software issues. These reports
were considered incorrect reports. In later sections, we will ana-
lyze errors that might have been reported due to privacy issues,
anti-adblocks, and social media content that were not considered
incorrect reports by EasyList editors.

3.4 Websites Involved in the Reports
Our dataset revealed that the EasyList community used the open
forums to report over 12,266 websites. Some of them were men-
tioned in more than one report. In our analysis, we studied only the
websites that were indicated in dataset D2A (reports with ground-
truth). Dataset D2A includes 4,212 websites. FP reports mentioned
1,266 websites, whereas FN reports referred to 2,946 websites. Some
of the websites were included in both FN and FP reports.

4 ANALYSIS
In this section, we deeply investigate the main factors related to
ad-blocking systems’ accuracy: the users, the websites, the types
of errors, and the time. We study the association between these
factors and the errors to draw a substantial picture of potential
consequences.

4.1 FP vs. FN Errors
From dataset D2A, Table 2 shows that there are 1,584 FP-related
reports and 3,700 FN-related reports. Even though we took conser-
vative linking methods, FPs still took 30% of all the errors, which is
a non-trivial portion. The delay of correcting FP errors, in general,
was shorter than that of correcting FN errors, which also varied
among different types of reporters. More specifically, the reporters
were classified into seven categories according to their experience
and tasks, as shown below:

• Editor: EasyList authors or maintainers
• Anonymous: guest users that are not registered in the forums
• New Member: registered users that have less than ten posts
whether they are reports or not

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

Reports Avg. of days SD.

Title FP FN FP FN FP FN

Anonymous 530 853 2.37 1.80 6.88 7.38
New Member 371 307 3.94 9.31 8.77 21.09
Senior Member 160 749 2.31 6.42 5.35 17.48
Developer 83 99 1.80 16.30 5.52 31.08
Other Lists Editor 105 603 1.65 2.65 3.86 11.02
Veteran 255 751 1.95 5.34 5.17 14.31
Editor 80 338 0.58 0.52 1.49 2.98

Total 1,584.00 3,700.00 2.09 6.05 5.29 15.05

Table 2: FP and FN error reports submitted by different categories
of users: “# Reports” means the number of reports, “Avg”. is the
average of days between submitting the report and correcting the
error, “SD” is the simple stander deviation of that periods.

• Senior Member: registered long-term users who have more
than ten posts in the forums

• Veteran: users determined by the forums administrators as
having made significant contributions to reporting errors. or
correcting bugs

• Developer: ad-block software developers
• Other List Editor: authors of other filter lists such as non-
English lists or privacy lists

We found that anonymous users have the highest contributions
in reporting errors. FP errors were particularly skewed towards
anonymous and new Members. FN errors were more evenly
divided among four of the user categories.

EasyList editors were more concerned about FP errors. This
was reflected by the fast response and standard deviation of solv-
ing the errors. However, the Editors’ responses were faster to the
anonymous FN reports than to the anonymous FP reports. The high
portion of contribution done by anonymous and the quick response
by the editors raise the concern about the credibility of the reports.

The individual contribution on reporting FP and FN errors varies.
From dataset D2A, we computed the number of reports submitted
by an individual user. Table 3 shows the average number and the
standard deviation of FP and FN error reports submitted by each
user in different user categories. We excluded the Anonymous
category because the anonymous users do not have “permanent”
profiles. Among all the groups, we found that the individual users
in the Veteran class have the highest activities on correcting FP
and FN errors. However, unlike other categories, the contribution
among individual users in the Developer class tends to correct more
FP errors than FN errors.

4.2 Websites Affected by FP and FN Errors
We studied the prevalence of FP and FN errors based on the set of the
websites referenced in our dataset. We focused on the popularity of
the websites to analyze two aspects: the estimated user population
impacted by the errors, and the crowdsourcing ability to detect the
errors in the websites of different ranks.

Website Popularity Ranking. For this analysis, we need to
determine the popularity of a given website. To do so, we reference
web ranking services that rank website based on traffic volume

Avg. Report\User SD.

Title FN FP FN FP

New Member 1.97 1.16 4.61 0.50
Senior Member 6.24 2.32 18.47 2.02
Developer 8.25 13.83 17.40 11.69
Other Lists Editor 24.12 11.67 96.39 12.52
Veteran 25.90 17.00 42.68 21.28
Editor 37.56 16.00 57.99 17.22

Avg. 17.34 39.59 10.33 10.87

Table 3: Average number of FP and FN error reports submitted
by each user in different categories of users: “Avg”. is the average
number of reports submitted by individual user, “SD” is the simple
stander deviation of the number of reports.

(i.e., number of visitors). Web ranking services such as Alexa [3],
Cisco Umbrella [28], Majestic [33], and Quantcast[63] serve the
same purpose, and yet, their rankings are not always consistent
with each other [58, 65]. In this paper, we chose to use Alexa’s
ranking for its coverage and the ability to access historical data.
More specifically, Alexa list covers more than one million websites
and provides access to the statistics for the past four years.

There are additional steps we took to improve the reliability of
our analysis. First, Alexa list might be impacted by weekly patterns
or daily changes [65]. As such, we utilized the premium API [5] to
obtain the 3-month average rank instead of the daily and weekly av-
erage. Second, the ranking might be changing over time. Although
we can obtain the past 4 years of data, our analysis covers the past
10 years. To this end, instead of looking at the specific ranking,
we focused on the higher level “ranking range”. We grouped the
websites ranks into more coarse-grained ranges so that the ranking
fluctuation would have a smaller impact on the overall conclusion.
Finally, to validate our conclusion, we used another ranking service
Umbrella [28] to generate another set of results for comparison.
The analysis is limited to Top 1 million domains, which is the limit
of Umbrella.

We first ranked the websites according to Alexa rank. Using that
rank, we classified the websites into seven classes. The first class
was the 500 top-ranked websites. The second class was called No
Rank (NR) class. It contains small websites that were not ranked in
Alexa because there was not enough traffic data to be analyzed by
Alexa. Between these two classes, we used two high classes, one
class was from 500 to 5K, and the other was from the 5K to 100K
top rank. We called them class 5K and class 100K, respectively. We
clustered the rest of the websites into three lower rank classes.

A glance at Figure 2 shows that the majority of the websites
indicated in FN error reports have high ranks. Over 53% of the
websites are ranked within the top 100K. A similar scenario happens
in FP cases when there are more than 57.8% of the websites ranked
in the top 100K. As a reference, if we used the Umbrella list, 30% of
FN error reports and 44% of FP error reports of the websites would
be ranked within the top 100K. However, this result does not mean
that the FN errors do not exist in less popular websites. Indeed, we
observed that class-NR websites (websites with no rank) also have
many FN and FP errors.

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
N

u
m

b
e

r
O

f
W

e
b

s
it
e

s

0

200

400

600

800

1000

1200

False Negative

False Positive

500

0.5K−5K

5K−100K

100K −1M

1M − 10M

10M − 20M

No R
ank

Alexa Rank

Figure 2: The number of websites that were
indicated in FN and FP error reports.

0.00

0.25

0.50

0.75

1.00

0 300 600 900 1200 1500
Delay in days

C
D

F

Rank

0.5K
5K
100K
1M
10M & 20M
NR

Figure 3: Distribution of delay of reporting
FP errors classified by the website groups.

0
1
0

3
0

5
0

7
0

N
u

m
b

e
r

o
f

e
rr

o
r

Error Reason

EasyHideE

DesHideE

DesBlockR

EasyBlockR

500
0.5K−5K

5K−100K

100K −1M

1M − 10M

10M − 20M

No R
ank

Alexa Rank

Figure 4: The frequency of four different
actions that caused FP errors in websites.

Anonymous New Member Senior Member Developer Other Lists Editor Veteran Editor

Likelihood Ratio 147.03 35.49 40.562 14.357 9.2607 27.911 11.097
X-squared (Pearson) 121.6966 33.30396 43.27946 13.92682 10.02684 26.67788 12.03555
P-value of X-squared 7.17E-24 9.16E-06 1.03E-07 0.030464 0.1235264 0.000166 0.0611805
Pearson correlation -0.05275 -0.158028 0.09673657 0.061129 — 0.1041299 —

Table 4: Statistical results of Pearson’s Chi-squared test and likelihood-ratio chi-squared test of independence and Pearson’s correlation
coefficient test of the linear trend between type of error variable and website class variable among different type of reporters.

User Categories. We also investigated the association between
the error types and the website classes for each user category. We
performed two tests. First, we tested the independence between the
two variables. We used Pearson’s chi-squared test and likelihood-
ratio chi-squared test. Second, if the statistical tests show that there
was a dependency, we measured the linear trend or correlation
using Pearson’s correlation coefficient. The error type variable was
categorical (discrete), and the website class was ordinal. We labeled
website classes scores from 1 to 7, and we gave an FP error score of
1 and an FN error score of 2 to perform Pearson’s correlation test.

Table 4 illustrates statistical results of our tests. Our null hypoth-
esis says that the types of error and website ranks are indepen-
dent. We see that there is no evidence against the null hypothesis
for Editor and Other List Editor users. The Developer
class also provided weak evidence if we consider 0.01 as a signifi-
cance level instead of 0.05.

On the other hand, statistical evidence shows that amongAnonymous,
New Member, Senior Member, and Veteran classes, the er-
ror type and website classes are not independent. The interesting
point is that Pearson’s correlation showed negative correlation in
Anonymous and New Member cases. This indicates that these
two types of users helped correct more FP errors than FN errors
for lower-rank websites. Expert users such as Senior Members
and Veterans showed the opposite.

4.3 Influence Time of FP Errors
Since this is the first work conducting a long-scale study on FP and
FN errors of ad-blocking systems, we aim to dispatch a message to
the industrial and research societies about how far these errors in
systems that are used by hundreds of millions of users go. In this
section, we try to answer the question of how long the websites
have suffered from FP errors. We do not have the data to measure
the delay of detecting FN errors and will focus on FP only.

In Section 3.2, we calculated the interval (i.e., error duration)
between the time when the element is blocked and the errors are
reported. Figure 3 shows the cumulative distribution function (CDF)
of the delay in reporting the errors by the crowd. As we see, 25%
of the websites had low error durations. Looking deeply into the
dataset, almost 15% of all the website classes had relatively small er-
ror durations of less than one day, and less than 25% of the websites
had error durations of less than four days. However, more than 50%
of the websites had error durations of more than one month. All the
website classes had the same trend over time. The same trend was
observed when we generated the result using the Umbrella rank
(omitted for brevity). The 100K class had the highest percentage in
the first 600 days whereas the NR class had the lowest percentage
after that interval. Finally, the NR group had the most extended
error duration.

4.4 Causes of FP Errors
Who is responsible for blocking legitimate contents of web pages
that are not ads? Is there an association between element types
and FP errors? What (hidden) factors are there that may cause FP
errors? The answers to these questions are the foundation of future
work that aims to improve the accuracy of ad-blocking systems or
prevent potential threats.

There are two possible reasons for FP errors. First, the errors
occur because EasyList adds bad filters (unintentionally) that cause
the blocking of non-ad content. Second, some website designers
may create non-ad elements that are already in the scope of Ea-
syList filters. Either way, ad-blocking software performs one of
two actions: blocking the HTTP GET request or hiding the page
element.

According to these observations, we break down the responsibil-
ities of FP errors in Table 5 using the dataset D2FP. Depending on
who introduced the elements first, the other party is the responsible
party. For example, if the website designers first used an element

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

Designer’s Failure Ad-blocker’s Failure

EasyList Action Element Type 5K 100K 20M NR Total 5K 100K 20M NR Total

Hide Element

Style Element 1 3 1 0.9% 2 2 4 10 3.2%
Embedded Content 1 2 0.5% 1 8 3 13 4.4%
Form 1 2 0.5% 2 3 1 1.1%
Interactive Element 1 1 0.4% 1 2 1 7 1.9%
Link Element 1 0.2% 2 2 2 23 5.1%
Section 6 4 5 9 4.2% 23 22 17 25 15.3%

% of Total 1.58% 1.93% 1.40% 1.75% 6.7% 5.44% 6.84% 4.91% 13.68% 30.9%

Block Request

Document Metadata 1 2 4 1 1.4% 5 16 10 6 6.5%
Embedded Content 10 4 12 4 5.3% 5 6 9 15 6.1%
Links 9 4 18 32 11.1% 14 14 24 29 14.2%
Scripting 18 23 6 5 9.1% 20 14 5 11 8.8%

% of Total 6.67% 5.79% 7.02% 7.37% 26.8% 7.72% 8.77% 8.42% 10.70% 35.6%

% of Total FP Error 33.5% 66.49%

Table 5: Count of FP errors, which happened in web pages, classified according to the type of impacted elements and the responsibility for
the error among the classes of websites.

Filter Srource %

FN error in home pages 31.16%
FN error in (internal) content pages 23.24%
Modifying existing filter 14.08%
From merging with other filter-lists 10.74%
Making filter more generic 4.23%
No information available (before 2009) 16.55%

Table 6: Sources of FP-error-causing filters in EasyList.

name for legitimate content, then the ad blocker who introduced the
filter that caused the FP error is the responsible party. We analyzed
the element types that were impacted by FP errors. We used the
W3C [81] standards to cluster and name the elements. Specifically,
we used HTML 5.2 standard [79], published on 14 December 2017.
We clustered the elements according to the EasyList action and
element type, as Table 5 illustrates.

Table 5 shows that ad-blockers had more responsibility (the
source of the error) than the website designers since ad-blockers
caused 65% of the errors. A large proportion was on small websites
(NR). Looking at dataset D1, the majority of ad-blocking failures
happened because they used generic filters with broad scopes. The
“Sections” element types such as article, body, and header, had the
highest number. The ad-block software hid this element using the
element’s attributes. The second type is the element type “Links"
that refers to an element that has an src attribute. Ad-blockers
block an HTTP request made to its source. The filter used is a
generic string that is utilized as a signature to match the URL.

On the other hand, a large percentage of the designers’ failures
occurred because of using strings in domains and URLs that were
already matched by filters, especially when they used CSS pop-
ups. Moreover, it merits to mention that designers of the top 500
websites—used by millions—had more responsibility for FP errors
than the ad blockers. However, about 34% of the errors impacted
“Embedded content" such as the iFrame element. The reason for
that was the embedded content used an src attribute that referred
to a source provided by a third party. Hence, the designers of the
third party bore the responsibility for that error.

Figure 4 shows the sources of errors, clustered into four groups.
The first group is EasyBlockR, which means the error happened

because ad blockers blocked web requests, and EasyHideE rep-
resents the reason that ad blockers hide elements incorrectly. The
group DesBlockR is due to the designers using incorrect strings
in the URL, and the group DesHideE results from the designers
using incorrect attributes for elements that were matched by Ea-
syList filters. The DesHideE had a lower number of errors among
all the classes of websites. The DesBlockR had high impacts on
the top 500 websites, but EasyBlockR took a high responsibility
in the rest of the website classes.

The ad blockers and website designers are both cause FP errors
in different place and by different methods.

4.5 Analysis of Filters causing FP Errors
Next, we take a closer look at the filters that caused the errors.
A filter is added to EasyList by creating a new filter, modifying
an existing filter, or transferring from another ad-block list. We
extracted the ground truth of the filters from dataset D2FP.

Table 6 shows the percentage of the sources of error-causing
filters. More than 54% of error-causing filters came from adding
new filters directly (31% on home pages, and 23% on internal pages).
Then 18% of the sources were from modifying existing filters. Filter
lists such as Fanboy [15] were merged with EasyList, and about
one in ten error-causing filters was from these filter lists. However,
17% of the error-causing filters were added to the first EasyList
version in our dataset. We do not know where the filters added by
the Editors to the first version in 2009 came from. Furthermore,
4% errors were caused by maximizing the existing filter scope (i.e.,
making the filter generic instead of specific). Even though this
percentage seems small, generic filters that caused errors on one
website may cause errors on many other websites.

Each filter from EasyList uses a signature to match ad elements.
We analyzed the signatures used by error-causing filters to match
the elements. The signatures depend on HTML attributes to hide
the elements or URLs that use src attributes to block HTTP GET
requests. We studied each filter to extract the HTML attributes used
to build the signatures. We grouped these attributes and named
them according to the HTML 5.2 standard [79] of the W3C standard
(Section 4). As Table 7 shows, the majority of error-causing filters
used global attributes such as ID and Class name. A tiny number of

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Attribute Category %

Global Attribute 52.4%
Tree Order 18.1%
Tree Order + Specific Link 14.8%
Global Attribute + Tree Order 7.1%
Specific Attribute + Specific Link 3.9%
Global Attribute + Specific Link 2.9%
Specific Attribute 0.9%

Table 7: The attributes used by error-
causing filters to match HTML elements.

Type of reason %

Insufficient detail 62.8%
Not ad or the error solved before 15.4%
Report in wrong forum section 8.3%
Adware 8.37%
Incomplete report 2.9%
Software Issue 2.3%

Table 8: The reasons of rejecting FN error
reports.

Website # Reports Alexa Rk.

youtube.com 201 2
Yahoo.com 98 6
facebook.com 73 3
google.com 45 1
Twitch.tv 41 43
CBS.com 31 1716
thevideo.me 23 656

Table 9: The most website indicated in
FN error reports (Alexa Rk means Alexa’s
ranking).

error-causing filters used specific attributes. For example, for src
attribute, it may use either a domain name or part of the address.
Finally, we investigated the links that were used to block HTTPGET
requests. We found that the majority of the error-causing filters
(68%) used string (i.e., part of the address) as a signature. Indeed,
this part of the address makes a filter more generic, which leads to
more errors.

4.6 FN Errors Reported by the Crowd
EasyList depends entirely on crowdsourcing to detect FN errors
in the wild. Between November 2009 and December 2018, about
17,968 reports were submitted. Each report was represented as a
post with its thread or replies. Figure 5 shows that 29% of the posts
did not have a response from EasyList editors. To understand if
EasyList editors missed those reports or solved the errors without a
public response, we extracted the incomplete reports from dataset
D2B. We manually checked the reports. We found that the reports
missed crucial details such as the names of the websites that had FN
errors, and the editors closed the report since they are not complete.
From all the FN reports, 20.6% of FN error reports were correct, and
20.8% of FN error reports were only about incorrect (or rejected)
reports. The rest of the reports did not show strong evidences to
be classified in either group. Even though the reports may have
sufficient details such as the name/URL of the website and the type
of errors, the editors did not respond or did not confirm whether
the reports were correct or incorrect, or simply because the reports
were closed. Certain reports were indeed discussed by the forum
members but were closed without editors’ approval. In general,
such limitations of the public forums make it difficult to track the
stats of some FN reports.

We analyzed the incorrect reports and listed the results in Ta-
ble 8. More than 62% of them were ignored because the reports
did not provide sufficient details about the ads and websites, or
the reporters did not respond to the editors’ questions. Another
important observation is that about 8% of the reports were rejected
because of ad-ware. Many users thought their ad-blocker failed
to block specific ads, but the truth is that their computers were
infected by adware that was overwriting the ad-blocker to inject
ads. About 97.6% of these users were anonymous or new members.

Our analysis above indicates that lots of crowd efforts were
wasted due to incorrect/incomplete reports. The forum web inter-
face should be better designed to ensure all important information
be collected.

0 Reply: 29%

1 Reply: 45%

2 Replies: 9%

3 Replies: 6%

4 Replies: 3%

> 4 Replies: 8%

Figure 5: # of Replies to the topics that represent the reports.

4.7 Websites with FN Errors
From dataset D2, 12,866 websites were mentioned to have FN errors.
Some of them were indicated in multiple reports. Table 9 illustrates
the most mentioned websites in the reports. The common factor
of these websites is that they are high-ranked websites. Intuitively,
many users visit these websites, which increases the opportunity to
report FN errors. However, we need to understand if these websites
used countermeasures against ad-block systems, hence the increase
in the number of FN errors. Therefore, we extracted the correct
reports that mentioned these websites from dataset D2A . Then we
inspected the filters that were added to correct these errors. We
found that the majority of the filters were added to block third-party
requests from reputable ad networks. The implication is that the FN
errors in high-rank websites also occurred because of third-party
ad networks that were dealt with. We conclude that the most of FN
errors happened in High ranked websites are because of the third
parity (ad publishers).

5 ADVERSARIAL EVASION ATTACKS
Existing works have discussed some vulnerabilities of EasyList [51,
82, 83] that allow ad publishers or website developers to bypass the
ad-blockers to deliver an advertisement to users. While the arms
race between ad publishers and the EasyList community is carrying

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

on, no study has looked into the problem from an empirical and
longitudinal prescriptive. In the following, we present a series of
vulnerabilities that are exploited (or can be exploited) to execute
evasion attacks.

Specifically, we analyze 15 attacks and group them in three cate-
gories. The first category, called More-Studied Attacks, includes
four types of attacks that have been investigated by previous re-
search in one way or another. The second category, called Less-
Studied Attacks, contains three attacks that are not well under-
stood even though they are known. In the third category, We intro-
duce eightNonstudied Attacks, which have not been reported by
the research community. Different from the previous research, our
vulnerability measurement is based on analysis of the historical
behavior of EasyList, and a rich set of data sources including the
syntax change of the filters, the change of signatures used to match
the ad elements in error reports, the behaviour of ad servers, and
the unsolvable reports.

5.1 More-Studied Attacks

1. WebSockets. The WebSocket protocol gives web developers
the ability to use client-side JavaScript to establish a connection to
an ad server. This connection allows the server to push messages to
the client without a request from the client. It is known that ad net-
works have been using webSockets to circumvent ad blockers [12].
By analyzing our dataset, we show that EasyList had blocked 291
websites and 137 ad servers for using WebSockets since 2016. The
ad network Uponit [76] (which is listed in EasyList blacklist) has
used WebSocket.

2. Anti-ad Blocker. A large body of existing work has studied
anti-ad blockers [30, 51, 89, 90]. Their research goals vary from
measuring the prevalence of anti-ad blockers, to designing methods
to bypass anti ad-blockers, to studying the reactions of the websites
that utilized anti-ad blockers against ad blockers. In particular, Zhu
et al. [89] listed three reactions: showing warning messages, switch-
ing ads, or reporting ad-block statistics. Our analysis of the dataset
D2 reveals a broader range of reactions, including restricting con-
tent on the sites using paywalls, blocking the websites, redirecting
the users to different websites or content, and blocking legitimate
content on the websites.

3. Randomization of Ad Attributes and URLs. A sophisti-
cated method of circumventing ad blocker was proposed by [83].
The idea is that the server can randomize the DOM of the web page
construction to hide the ad signatures. In addition, the whole URLs
are encrypted using public-key cryptography to randomize the URL
strings. To counter this evasion, EasyList introduced two new filter
syntaxes:-abp-has to filter out an ad element according to its con-
tent subtree, and -abp-contains() to filter out an ad element
according to a specified string that the element contains. EasyList as
well as other filter lists take advantage of the new CSS4 pseudo-class:
‘:has()’ [80] and jQuery API :contains() Selector [34]. For example,
the filter facebook.com#?#.outer:-abp-has(a:abp-
contains(ad)) selects a child node that contains string ad of
a node that has class outer on facebook.com. We analyzed the
filters that used this syntax and found 15 websites that performed
such randomization. Facebook appeared most frequently in the

Ad Network
Server Domains

SinceAdded Removed

PopAds 8,541 38 Sep-2016
Propellerads 910 2 Apr-2016

Yavli 338 6 Oct-2014
Uponit 207 1 Feb-2018

Hilltopads 155 3 Jan-2018
Tag adservers 47 2 Feb-2017

Admiral 47 4 Jan-2017

Table 10: Number of Ad-server domains that are added or removed
to/from the blacklist of EasyList. The date indicates the first time
when the first domain was added to EasyList.

filter list. Among all other websites, 57% of the filters used this
syntax function to block ads on Facebook. We did not find any case
that encrypted the URLs to circumvent ad blockers.

4. Factoring Acceptable Ads List Sitekeys. Walls at el. [82]
present a way to circumvent EasyList and exhibit the ads by crack-
ing the whitelist sitekeys. Sitekeys are filters that have base64 rep-
resentation of RSA public keys used to identify accepted ads by
ad-block software. However, we did not find any report complaining
about this issue.

5.2 Less-Studied Attacks

1. Changing Ad-Server Domains. The ad servers are used to
store, maintain and serve advertisements to website visitors when
the web pages are loaded. Iqbal at el. [30] and Vastel at el. [77]
state that ad networks often change ad server domains to avoid
being blocked. However, they did not provide large-scale statistical
analysis (or evidences). As such, we empirically examine how these
ad networks exploited EasyList using our dataset.

Our dataset shows that the number of ad server domains and
IPs has increased from 505 in 2009 to 15,500 in January 2019. The
average number of domains added to EasyList per month during the
last 9 years was 146, while the average number of domains removed
was 72. About 20% of the ad server domains listed in the EasyList
(as of January 15, 2019) belonged to 7 ad networks. Table 10 shows
the number of ad-server domains that were added or removed
from EasyList. We observe that the number of added domains is
significantly larger than the number of removed domains. After
further investigation, we conclude that EasyList did not properly
handle the obsolete and redundant domains. We found 104 domains
listed in EasyList in May 2017 were duplicated with other domains,
and they belonged to Propellerads [59]. The problemwas discovered
and the filters of such domains were removed in March 2018.

We also looked beyond our dataset to demonstrate the existence
of this attack.More specifically, wemeasured the number of Internet
users who visited the ad servers before and after they were added
to EasyList. For this analysis, we obtained the historical traffic
information of the ad-severs from Alexa Web Information Service
(AWIS) [5]. AWIS offers traffic ranks of the websites, based on a
combined measure of unique visitors and page views on a daily
basis. Note that the AWIS API only provides the traffic history of a
given server for the last 4 years, which is sufficient for our analysis.

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Using the 4-years of AWIS dataset, We analyzed 567,293 records
of 6,903 ad-server domains.We found that 52% of the ad servers’ traf-
fic activities disappeared three days after these ad-server domains
were added to EasyList. This was because EasyList was set to be
expired (updated) every four days. Lately, the versions of EasyList
used by Adblock Plus (and some other lists such as EasyPrivacy
Tracking Protection List) has changed the update frequency to be
one day [54, 56, 57]. We further observed that 84% of these 52%
ad servers were blocked shortly after they were created. Shortly
after their traffic activities started, their domains were added to the
EasyList in the same day. The reason was that certain ad networks
randomly generated ad server domains. The EasyList community
(including editors and Adblock Plus developers) ran code to mon-
itor the changes of certain websites to detect the change of ad
servers [20, 22]. Those randomly generated domains thus were
quickly detected and added to EasyList for blocking.

The next question is whether the EasyList’s blocking signifi-
cantly reduces the ad-network domains’ traffic in a longer term. We
applied t-test to find if blocking by EasyList had a significant im-
pact on the ad servers. To hold the normality assumption from both
groups, we used the traffic activities of ad servers for 30 records
before and 30 records after the blocking. The significance level
α = 0.05. We tested the differences in the records’ average means
of 1,400 ad-server domains and found only 61% of the ad servers
were significantly influenced by the blocking.

2. Changing Ad-Element Attributes. Website developers can
circumvent ad blockers by changing the ad element attributes [30,
71]. We studied the reaction of EasyList against this evasion using
our dataset. We found that EasyList did not have the capability
to automatically trace the change of ad elements. The changed ad
elements were given new signatures and were treated as new ones.
These new elements were blocked only if they were reported by
crowdsourcing. Occasionally, EasyList could recognize the change
of an ad attribute when a popular ad network changes it for all its
websites. In this case, EasyList editors would replace an old filter
with a new one.

To analyze this behavior, we extracted the corresponding filters
that have common signatures from dataset D1. More specifically,
we look for cases where the old signature(s) were removed and
new signature(s) were added to the same EasyList version. If a
new signature was applied to the same website, we conclude that
EasyList was chasing after the website to detect the modification of
an ad-element attribute. We only found 553 instances that EasyList
changed the filters in response to this type of evasions. The average
delay of changing the attributes was 10.3 days. From these instances,
we found 311 websites changing their attributes. About 88% of them
were the clients of the ad network Yavli (yavli.com).

3. Changing the Path of Ad Source. EasyList filters match a
request using the domain name or the URLs path. Therefore, the
ad publishers may change the “path” of the URLs to circumvent ad
blockers. Like the previous analysis, we identified the signatures
added and removed form each EasyList version that were applied
on the same websites. In total, we found 644 websites changed their
the ad URL’s paths to circumvent blocking. About 47.6% of them
were clients of the ad network Yavli.

5.3 Nonstudied Attacks
From our dataset, we have identified 8 types of evasion attacks that
are not yet studied by the research community. We further inves-
tigated the error reports of EasyList, the public reports of other
active filter lists such as uAssets filter list [73], and the technical
issue reports of Adblock Plus [55] and uBlockOrigin [74]. We con-
clude that although some evasion attacks are known by certain ad
blockers, they are not known by all ad blockers. The following are
our discoveries on these nonstudied attacks.

1. Exploiting Obsolete Whitelist Filters. EasyList did not
track the domains in the whitelist filters. The whitelist includes
the exception filters indicating the elements and URLs on which
ad blockers do not take effect. EasyList editors manually main-
tained and removed the obsolete filters over time (every 2 − 3
months). Over the past 9 years, EasyList editors handled dead fil-
ters 82 times and removed 353 domains from the whitelist. Some
of the whitelisted domains have been abused to deliver ads. For
instance, shackvideo.com is a domain name added to whitelist
filters in November 2010. Using Hosterstats [27], we found that the
domain was deleted in May 2016. After that, a website exploited it
to deliver ads. EasyList discovered this issue in January 2017 and
deleted the filter.

2. Using Generic Exception Rules. When a user visits a web-
site with anti-ad blocker(s), the anti-ad blocker script tests the states
of ad elements to detect the presence of ad blockers. To counter this
practice, EasyList would block the anti-ad blocker script or exclude
the corresponding ad elements by putting them in the whitelist. To
bypass ad blocking, some ad networks and developers introduced
elements that could trigger anti-ad blocking and distributed them
across many websites. With this, it was arduous for EasyList to
discover all the websites that were using these elements; therefore,
EasyList would add a generic exception rule for those elements. We
have observed many websites abused generic exception filters to
bypass EasyList. For instance, jpost.com exploited the exception
filters,

@@||redtube.com*/adframe.js

to bypass EasyList and deliver ads using the following URL:

http://redtube.com.umamdmo.com/vp?&i=110
...=true&cb=OYmZJ&dr=true&q=/adframe.js

The exception rule was created in January 2014 and the abuse was
discovered in November 2016.

3. Exploiting False Positive Errors. Some websites applied
self-defacement to create difficulties for users that use ad blockers.
We observed that some websites associated and linked the ad ele-
ments with their legitimate elements. When ads were blocked, the
non-ad elements were blocked too, causing false positives for the
ad-blocker. They linked the ad elements with legitimate elements
using the signatures to match the EasyList filters with their ad
elements.

4. First-Party Content and Inline Script. Despite the secu-
rity risk of using the inline scripts [32, 36] , websites have been
using them to detect ad blockers in order to perform anti-ad blocker

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

tasks [89]. Accordingly, EasyList made exception rules for ad el-
ements that were used as inline script triggers. However, this be-
havior has tempted the web developers to increase the utilization
of inline scripts and the first-party content. The web developers
have utilized inline scripts to create network requests to deliver the
ads directly or using the first-party content to host the ad URLs.
EasyList started to take advantage of the Content Security Poli-
cies (CSP) [50] to block inline scripts. The first version of EasyList
containing a CSP-based filter appeared in May 2018. Within six
months, EasyList added 142 websites to the blacklist, 78% of which
were in the top 100K Alexa rank.

5. ISP Injecting Ads. To deliver ads to users, Internet Service
Providers (ISPs) may inject HTML, CSS, or/and Javascript into
HTTP responses. This strategy was limited to the websites that use
HTTP. Existing works have discussed this method of delivering
ads [10, 52, 72]. However, this method may also be exploited to
circumvent filter lists. The traditional method of blocking the ad
server domain is no longer effective in this case, because there is no
HTTP request to be blocked and the ads are appended to the first-
party content. Moreover, an ISP is able to append an ad to a different
URL each time. Among all the FN reports, we found only one report
that indicated an FN error due to ISP ads injection, performed by the
ISP named Optimum [6]. A countermeasure adopted by EasyList
was to block the IP addresses that served the ads, which is not a
fundamental solution.

6. Background Redirection. Ad publishers may circumvent
browser’s pop-up ad blockers by using a technique known as Tab-
unders. Specifically, when users click on a link in a web page, the
link is opened in a new tab and the background of the old tab is
redirected to an advertisement page. Based on our analysis of the
crowdsourcing reports, we found that this problem was reported in
May 2015. However, until today, EasyList is still unable to address
this issue. Recently, Chrome (version 68.0 and above) has blocked
Tab-under navigation [75], but other browsers such as Firefox have
not yet taken actions.

7. Exploiting WebRTC. WebRTC, using Real-Time Communi-
cations (RTC), is an open-source project providing APIs to enable
browsers and mobile applications to communicate without requir-
ing an intermediary. Security concerns of using WebRTC [85] have
been reported recently [61, 62]. However, ad networks have utilized
WebRTC to establish real-time communications between servers
and browsers and used RTCPeerConnection APIs to send ads. In
May 2018, EasyList and Adblock Pulse started to block ads that
use WebRTC by wrapping the RTCPeerConnection. EasyList added
to its blacklist 220 website domains and 139 ad-server domains
that used WebRTC. Uponit ad servers used 136 domains based on
WebRTC.

8. CSS Background Image Hack. Some websites used CSS
background image hacks to exhibit the ads. EasyList created special
filters used by Adblock Plus and uBlock Origin with a new syntax to
countermeasure the attack. The syntax is [-abp-properties=
‘data:’], which allows ad-blocking software to recognize the ad
elements according to their properties. We observed that EasyList
applied the new syntax on 40 websites in 2016 and 2017.

6 DISCUSSIONS

Key Implications. Our analysis shows that the number of FP
errors is non-trivial. The website owners who used unsuitable ele-
ment attributes and EasyList that created bad signatures were both
responsible for the FP errors. However, it seems to be impossible
to establish the communication between the two parties to avoid
and mitigate such errors because of the “enmity” between them.
This increases the responsibility of the researchers to build more
effective systems to detect and resolve such errors. In this work,
we aim to build a foundation for future research by analyzing the
sources of the errors from different aspects.

Ad block Systems in General. Ad block systems are consid-
ered as a security-enhancing measure. With the quick expanding
in employing these systems, many security tasks were assigned to
them by introducing new filter lists to provide protections against
malvertising, phishing, spamming, crypto-mining, clickbaiting, and
others. We depended heavily on EasyList in our analysis for two
reasons. First, as we have indicated, it is the most used filter list.
That created a lot of adversaries against it, and expand the scope
of our research to find all the possible attacks and vulnerabilities.
Second, many ad-blocking software use it as a default filter list, and
many filter lists directly inherit from it or follow its way to filter
ads.

Consequences of Filter Lists’ Limitations. We highlighted
the errors and the misunderstandings, and we provided intensive
analysis of 15 attacks on the core of the systems – filter lists. One
of the main goals is to contribute a lighthouse for research and
industry communities about systems used by hundreds of millions.
We notice there is a considerable amount of research depends on
EasyList for their evaluation measurement [13, 31, 64, 87, 90]. The
lack of understanding the limitations of EasyList may lead to in-
accurate results. Recent works start to address the issues of filter
lists. For example, Zhu at el. [90] also highlighted the issue of “ad
rotation networks” and “automatically generated domain names”,
and proposed solutions. We show that EasyList community is also
adding new syntaxes to overcome these attacks, and researchers
should cross-compare the results to provide new gains. Another
recent work [31] proposed a machine learning approach to block
ads automatically which can block 16% more ads than the filter lists.
Systems as such help to address the false negatives of the filter list
but may also introduce new false positives. Our study has shown
that more than one-third of the community effort was to correct
FP errors, which is a factor that cannot be overlooked.

Advanced Attacks Against Adblockers. We presented the 15
possible countermeasures against ad blockers as the basic evasion
attacks. There are some advanced countermeasures. For instance,
Carasso in a Google patent[16] illustrated a method of delivering
ads using a bypass loader and a bypass proxy. The loader checks
the presence of ad blockers, and then the ads are delivered using
a bypass proxy that changes its domain frequently. Indeed, the
method is combined of two types of evasion attacks: changing the
Ad-Server Domains and Anti-ad Blocker.

Limitations. First, our dataset covered the historical data back
to 2009. We could not find any data before November 2009, or infer

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

when the rules were added in the first snapshot. Second, when
extracting the ground-truth error reports, we chose a conservative
approach to link the reported errors to the EasyList updates. This
was to ensure the correctness of the linking and the reliability of the
results, but we had to sacrifice the coverage. It is a trade-off between
the scale of the data and the accuracy of the analysis. We chose
the latter. Although the scale is smaller, the samples are still very
diverse, covering different reporter types, editors, websites types,
and website ranking ranges. Finally, the Internet Archive limited
us from extracting data from web pages that were not archived. A
similar limitation is indicated in [41].

Other filter lists. Our work focused on the ad-blocking fil-
ter list and its weakness. Other types of filter lists share with ad-
blocking filter list some of the weaknesses. For example, Sinha et.
al. [69] illustrated that the reputation-based blacklist, namely those
used to block unsolicited emails, have considerable false positive
errors. Another example is the phishing blacklists. Sheng et. al. [67]
stated that phishing detection by heuristics took a long time to ap-
pear on blacklists. However, studying the lifetime of false positives
in other filter lists is a plan for our future work.

7 RELATEDWORK
In this section, we briefly discussed the related works in the follow-
ing two categories: issues related to crowdsourcing, and analyzing
the ad-blocking ecosystem.

Crowdsourcing Accuracy and Security Issues. Recent re-
search about crowdsourcing quality is mainly about the systems
in the following fields: information retrieval [35], financial incen-
tives [43], labeling [42, 68], natural language [9, 70] and geographic
information [23]. There are also many works which attempt to en-
hance the accuracy and quality of crowdsourcing [4, 8, 37–39, 42].
For example, Le at al. [39] suggested training the crowd.

Analysis of Ad-blocking Systems and Filter Lists. The re-
lationship between Internet users, ad publishers, and ad block-
ers has been studied by substantial research from different angles.
One angle is the reaction between the ad blockers and the web-
sites [51, 53, 89]. For instance, Zhu at el. [89] presented a differential
execution analysis method to detect and analyze anti-ad blockers.
Another angle was studied by Pujol et al. [60], who analyzed the
interactions between Internet users who use ad-blocking software
and the ad ecosystem. Vratonjic et al. [78] have investigated the
consequences of ad blocking on the websites from the perspective
of a business model, while Miroglio et al. [48] have investigated the
effects of ad blocking on Internet users.

As to Filter Lists, Wills and Uzunoglu [87] have studied the
third-party domains of filter lists and suggested ways to improve
ad-blocking tools to prevent requests to a different type of these
domains. The whitelist of EasyList were studied by Walls et al. [82].
The privacy filter lists have been investigated on a high level by
Gervais et al. [25] and [46] in order to study tracker-blocking
methodologies. Our approach is complementary to existing works:
We conducted a deeper analysis of the accuracy of filter lists.

8 CONCLUSION
This paper presented an intensive study of the behavior of the ad-
blocking system and its community using two longitudinal datasets.
The central conclusions are (1) false positive in ad-blocking systems
using filter list is non-trivial, (2) a large number of false positive
errors have long lifetimes that occurs in a wide range of websites as
a consequence of many reasons, (3) the mechanism of dealing with
false negative errors has some deficiencies and weaknesses, (4) the
system has many vulnerabilities impacting its accuracy. The paper
presented the vulnerabilities by exhibiting 15 different ways to
circumvent the system. We hope the findings build lighthouses for
any future work to evolve ad blocking and optimize crowdsourcing
mechanisms.

ACKNOWLEDGEMENT
Wewould like to thank our shepherd Georgios Smaragdakis and the
anonymous reviewers for their helpful feedback. This project was
in part supported by NSF grants CNS-1750101, CNS-1717028, CNS-
1618684, CNS-1718459. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any funding
agencies.

REFERENCES
[1] 2017. About /robots.txt. http://www.robotstxt.org/robotstxt.html
[2] AdGuard. 2019. AdGuard Ad Filters. https://kb.adguard.com/en/general/adguard-

ad-filters
[3] Aexa. 2016. Drive More Website Traffic with Competitive Analysis. https:

//www.alexa.com/siteinfo
[4] Ahmet Aker, Mahmoud El-Haj, M-Dyaa Albakour, Udo Kruschwitz, et al. 2012.

Assessing Crowdsourcing Quality through Objective Tasks.. In Proceedings of the
2012 International Conference on Language Resources and Evaluation (LREC).

[5] Alexa. 2019. Alexa Web Information Service. https://awis.alexa.com/
[6] Altice. 2019. Optimum by Altice. https://www.optimum.com/alticeone
[7] Internet Archive. 2019. Wayback Machine. https://archive.org/web/
[8] Pavel Atanasov, Phillip Rescober, Eric Stone, Samuel A Swift, Emile Servan-

Schreiber, Philip Tetlock, Lyle Ungar, and Barbara Mellers. 2016. Distilling the
wisdom of crowds: Prediction markets vs. prediction polls. Management science
(2016).

[9] Kartik Audhkhasi, Panayiotis G Georgiou, and Shrikanth S Narayanan. 2012.
Analyzing quality of crowd-sourced speech transcriptions of noisy audio for
acoustic model adaptation. In Proceedings of the 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).

[10] Pradeep Bangera, Syed Hasan, and Sergey Gorinsky. 2017. An advertising revenue
model for access ISPs. In 2017 IEEE Symposium on Computers and Communications
(ISCC). 582–589.

[11] David Barton. 2017. The Rules of Adblocking: How block list work. http://pagefair.
com/blog/2016/behind-the-scenes-adblocking-lists-and-countermeasures.

[12] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
Christo Wilson. 2018. How tracking companies circumvented ad blockers using
websockets. In Proceedings of the 2018 ACM Conference on Internet Measurement
Conference (IMC).

[13] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian
Ziebart. 2014. Leveraging machine learning to improve unwanted resource
filtering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security
Workshop (AISec). 95–102.

[14] Chromium blog. 2018. Under the hood: How Chrome’s ad filtering works. blog.
chromium.org/2018/02/how-chromes-ad-filtering-works.html

[15] Ryan Brown. 2019. Fanboy Filter Lists. https://www.fanboy.co.nz/
[16] Adam Carasso. 2015. Systems and methods to bypass online advertisement

blockers. US Patent 9,177,335.
[17] Google Chrome. 2019. Chrome Web Store-Extensions. https://chrome.google.

com/webstore/category/extensions
[18] Wikipedia contributors. 2019. HTTP/ 301. https://en.wikipedia.org/wiki/HTTP/

_301 [Online; accessed 13-May-2019].
[19] Matthew Cortland. 2017. PageFair adblock report: The state of the blocked web

presents a combined picture of desktop and mobile adblock usage for the first
time. https://pagefair.com/blog/2017/adblockreport/

http://www.robotstxt.org/robotstxt.html
https://kb.adguard.com/en/general/adguard-ad-filters
https://kb.adguard.com/en/general/adguard-ad-filters
https://www.alexa.com/siteinfo
https://www.alexa.com/siteinfo
https://awis.alexa.com/
https://www.optimum.com/alticeone
https://archive.org/web/
http://pagefair.com/blog/2016/behind-the-scenes-adblocking-lists-and-countermeasures
http://pagefair.com/blog/2016/behind-the-scenes-adblocking-lists-and-countermeasures
blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://www.fanboy.co.nz/
https://chrome.google.com/webstore/ category/extensions
https://chrome.google.com/webstore/ category/extensions
https://en.wikipedia.org/wiki/HTTP/_301
https://en.wikipedia.org/wiki/HTTP/_301
https://pagefair.com/blog/2017/adblockreport/

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Alrizah et al.

[20] EasyList. 2019. Automated Adserver Update. https://github.com/easylist/easylist/
commit/f31a2d3800547615b82cb89333586828749a7e88

[21] EasyList. 2019. Overview of EasyList. https://easylist.to
[22] Fanboy. 2019. Create a tool/script to pickup revolving adservers. https://issues.

adblockplus.org/ticket/5323
[23] Giles M Foody, L See, Steffen Fritz, Marijn Van der Velde, Christoph Perger,

Christian Schill, and Doreen S Boyd. 2013. Assessing the accuracy of volunteered
geographic information arising from multiple contributors to an internet based
collaborative project. Transactions in GIS (2013).

[24] EasyList Forum. 2019. EasyList Forum:The Easy Subscriptions for Adblock,
Adblock Plus and uBlock Origin. https://forums.lanik.us/

[25] Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun. 2017.
Quantifying web adblocker privacy. In Proceedings of the 2017 European Sympo-
sium on Research in Computer Security (ESORICS).

[26] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders. 2015.
An automated approach for complementing ad blockers’ blacklists. In Proceedings
of the 2015 Privacy Enhancing Technologies Symposium (PETS).

[27] HosterStats. 2019. About HosterStats.com. http://www.hosterstats.com/
AboutHosterStats.php

[28] Dan Hubbard. 2016. Cisco Umbrella 1 Million. https://umbrella.cisco.com/blog/
2016/12/14/cisco-umbrella-1-million/

[29] Gargoyle Software Inc. 2018. HtmlUnit. http://htmlunit.sourceforge.net
[30] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The ad wars: retrospective

measurement and analysis of anti-adblock filter lists. In Proceedings of the 2017
Internet Measurement Conference (IMC).

[31] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu, Zhiyun Qian, and Benjamin
Livshits. 2018. Adgraph: A machine learning approach to automatic and effective
adblocking. arXiv preprint arXiv:1805.09155 (2018).

[32] Martin Johns. 2014. Script-templates for the content security policy. Journal of
Information Security and Applications (JISA) (2014).

[33] Dixon Jones. 2012. Majestic Million CSV now free for all, daily. https://blog.
majestic.com/development/majestic-million-csv-daily/

[34] jQuery. 2019. :contains() Selector. https://api.jquery.com/contains-selector/
[35] Gabriella Kazai, Jaap Kamps, Marijn Koolen, and Natasa Milic-Frayling. 2011.

Crowdsourcing for book search evaluation: impact of hit design on comparative
system ranking. In Proceedings of the 2011 ACM SIGIR International Conference
on Research and Development in Information Retrieval (SIGIR).

[36] Christoph Kerschbaumer, Sid Stamm, , and Stefan Brunthaler. 2016. Injecting
CSP for Fun and Security. In Proceedings of the 2nd International Conference on
Information Systems Security and Privacy (ICISSP).

[37] Aniket Kittur and Robert E Kraut. 2008. Harnessing the wisdom of crowds
in wikipedia: quality through coordination. In Proceedings of the 2008 ACM
Conference on Computer Supported Cooperative Work (CSCW).

[38] Aniket Kittur, Jeffrey V Nickerson, Michael Bernstein, Elizabeth Gerber, Aaron
Shaw, John Zimmerman, Matt Lease, and John Horton. 2013. The future of
crowd work. In Proceedings of the 2013 ACM Conference on Computer Supported
Cooperative Work (CSCW).

[39] John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. 2010. Ensuring qual-
ity in crowdsourced search relevance evaluation: The effects of training question
distribution. In Proceedings of the 2010 ACM SIGIR Workshop on Crowdsourcing
for Search Evaluation (CSE).

[40] Ada Lerner, Tadayoshi Kohno, and Franziska Roesner. 2017. Rewriting history:
Changing the archived web from the present. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[41] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological
Study of Web Tracking from 1996 to 2016. In Proceedings of the 2016 USENIX
Security Symposium (USENIX Security).

[42] Hongwei Li, Bin Yu, and Dengyong Zhou. 2013. Error rate analysis of labeling
by crowdsourcing. In Proceedings of the 2013 International Conference on Machine
Learning Workshop: Machine Learning Meets Crowdsourcing (ICML Workshop).

[43] Winter Mason and Duncan J Watts. 2009. Financial incentives and the perfor-
mance of crowds. In Proceedings of the 2009 ACM SIGKDD Workshop on Human
Computation (KDD Workshop).

[44] Mercurial. 2019. Mercurial: Changeset. https://www.mercurial-scm.org/wiki/
ChangeSet

[45] Mercurial. 2019. Mercurial source control management: Adblock Plus. https:
//hg.adblockplus.org/

[46] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can:
A large-scale study of tracker-blocking tools. In Proceedings of the 2017 IEEE
European Symposium on Security and Privacy (EuroS&P).

[47] Michael. 2011. EasyList Statistics: August 2011. https://easylist.to/2011/09/01/
easylist-statistics:-august-2011.html

[48] Ben Miroglio, David Zeber, Jofish Kaye, and Rebecca Weiss. 2018. The Effect of
Ad Blocking on User Engagement with the Web. In Proceedings of the 2018 World
Wide Web Conference (WWW).

[49] Mozilla. 2018. Add-ons for Firefox. https://addons.mozilla.org/en-US/firefox/

[50] Mozilla. 2019. Content Security Policy (CSP). https://developer.mozilla.org/en-
US/docs/Web/HTTP/CSP

[51] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting anti
ad-blockers in the wild. In Proceedings of the 2017 Privacy Enhancing Technologies
Symposium (PETS).

[52] Gabi Nakibly, Jaime Schcolnik, and Yossi Rubin. 2016. Website-targeted false
content injection by network operators. In Proceedings of the 2016 USENIX Security
Symposium (USENIX Security).

[53] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E Powles, ED Cristofaro, HamedHaddadi, and Steven J
Murdoch. 2016. Adblocking and counter blocking: A slice of the arms race. In
Proceedings of the 2016 USENIX Workshop on Free and Open Communications on
the Internet (FOCI).

[54] Adblock Plus. 2017. Source: synchronizer.js. https://adblockplus.org/jsdoc/
adblockpluscore/synchronizer.js.html

[55] Adblock plus. 2019. Adblock plus Reports. https://issues.adblockplus.org/report
[56] Adblock Plus. 2019. EasyList of Adblock Plus. https://easylist-downloads.

adblockplus.org/easylist.txt
[57] Adblock Plus. 2019. EasyPrivacy of Adblock Plus. https://easylist-downloads.

adblockplus.org/easyprivacy.tpl
[58] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-

czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

[59] PropellerAds. 2019. PropellerAds: AdTech that helps affiliates succeed. https:
//propellerads.com/about-us/

[60] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed users: Ads and
ad-block usage in the wild. In Proceedings of the 2015 ACM Conference on Internet
Measurement Conference (IMC).

[61] PureVPN. 2018. How to Disable WebRTC in Firefox and Chrome Browsers.
https://www.purevpn.com/blog/disable-webrtc-in-chrome-and-firefox/

[62] PUREVPN. 2018. WebRTC Leaks Vulnerability-SOLVED (For all Browsers).
https://restoreprivacy.com/webrtc-leaks/

[63] Quantcast. 2018. Top Websites. https://www.quantcast.com/top-sites/US/1
[64] Kent Rasmussen, Alex Wilson, and Abram Hindle. 2014. Green mining: en-

ergy consumption of advertisement blocking methods. In Proceedings of the 3rd
International Workshop on Green and Sustainable Software (GREENS). 38–45.

[65] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D Strowes, and Narseo Vallina-Rodriguez. 2018. A long way to
the top: significance, structure, and stability of internet top lists. In Proceedings
of the 2018 Internet Measurement Conference (IMC).

[66] Wayback CDX Server. 2018. Wayback CDX Server API. https://github.com/
internetarchive/wayback/tree/master/wayback-cdx-server

[67] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Faith Cranor, Jason Hong,
and Chengshan Zhang. 2009. An empirical analysis of phishing blacklists. In
Proceedings of the Sixth Conference on Email and Anti-Spam (CEAS).

[68] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. 2008. Get another
label? improving data quality and data mining using multiple, noisy labelers.
In Proceedings of the 2008 ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

[69] Sushant Sinha, Michael Bailey, and Farnam Jahanian. 2008. Shades of Grey:
On the effectiveness of reputation-based âĂĲblacklistsâĂİ. In Proceedings of the
2008 International Conference on Malicious and Unwanted Software (MALWARE).
57–64.

[70] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. 2008. Cheap
and fast—but is it good?: evaluating non-expert annotations for natural language
tasks. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

[71] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. 2017.
The future of ad blocking: An analytical framework and new techniques. arXiv
preprint arXiv:1705.08568 (2017).

[72] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, et al. 2015.
Ad injection at scale: Assessing deceptive advertisement modifications. In In
Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[73] uAssets. 2019. uAssets: resources for uBlock Origin (uBO) uMatrix: static filter
lists ready-to-use rulesets etc. https://github.com/uBlockOrigin/uAssets

[74] uBlock. 2019. uBlock-issues. https://github.com/uBlockOrigin/uBlock-issues
[75] uBlockOrigin. 2019. Adblock Plus filters explained. https://www.chromestatus.

com/feature/5675755719622656
[76] upOnit. 2019. UPONIT:Who We Are. https://uponit.com/who-we-are/
[77] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2018. Who Filters the

Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced
Ad Blocking. arXiv preprint arXiv:1810.09160 (2018).

[78] Nevena Vratonjic, Mohammad Hossein Manshaei, Jens Grossklags, and Jean-
Pierre Hubaux. 2013. Ad-blocking games: Monetizing online content under the
threat of ad avoidance. In The Economics of Information Security and Privacy.

[79] W3C. 2018. HTML 5.2:W3C Recommendation. https://www.w3.org/TR/2017/
REC-html52-20171214/

https://github.com/easylist/easylist/commit/f31a2d3800547615b82cb89333586828749a7e88
https://github.com/easylist/easylist/commit/f31a2d3800547615b82cb89333586828749a7e88
https://easylist.to
https://issues.adblockplus.org/ticket/5323
https://issues.adblockplus.org/ticket/5323
https://forums.lanik.us/
http://www.hosterstats.com/AboutHosterStats.php
http://www.hosterstats.com/AboutHosterStats.php
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
http://htmlunit.sourceforge.net
https://blog.majestic.com/development/majestic-million-csv-daily/
https://blog.majestic.com/development/majestic-million-csv-daily/
https://api.jquery.com/contains-selector/
https://www.mercurial-scm.org/wiki/ChangeSet
https://www.mercurial-scm.org/wiki/ChangeSet
https://hg.adblockplus.org/
https://hg.adblockplus.org/
https://easylist.to/2011/09/01/ easylist-statistics:-august-2011.html
https://easylist.to/2011/09/01/ easylist-statistics:-august-2011.html
https://addons.mozilla.org/en-US/firefox/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://adblockplus.org/jsdoc/adblockpluscore/synchronizer.js.html
https://adblockplus.org/jsdoc/adblockpluscore/synchronizer.js.html
https://issues.adblockplus.org/report
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist-downloads.adblockplus.org/easylist.txt
https://easylist-downloads.adblockplus.org/easyprivacy.tpl
https://easylist-downloads.adblockplus.org/easyprivacy.tpl
https://propellerads.com/about-us/
https://propellerads.com/about-us/
https://www.purevpn.com/blog/disable-webrtc-in-chrome-and-firefox/
https://restoreprivacy.com/webrtc-leaks/
https://www.quantcast.com/top-sites/US/1
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://github.com/uBlockOrigin/uAssets
https://github.com/uBlockOrigin/uBlock-issues
https://www.chromestatus.com/feature/5675755719622656
https://www.chromestatus.com/feature/5675755719622656
https://uponit.com/who-we-are/
https://www.w3.org/TR/2017/REC-html52-20171214/
https://www.w3.org/TR/2017/REC-html52-20171214/

Analyzing the Crowdsourcing Process of Ad-blocking Systems IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

[80] W3C. 2019. The Relational Pseudo-class: ‘:has()’. https://drafts.csswg.org/
selectors-4/#has-pseudo

[81] W3C. 2019. The World Wide Web Consortium (W3C). https://www.w3.org/
[82] Robert J Walls, Eric D Kilmer, Nathaniel Lageman, and Patrick D McDaniel. 2015.

Measuring the impact and perception of acceptable advertisements. In Proceedings
of the 2015 ACM Conference on Internet Measurement Conference (IMC).

[83] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang,
and Patrick Eugster. 2016. Webranz: web page randomization for better advertise-
ment delivery and web-bot prevention. In Proceedings of the 2016 ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE).

[84] Webrecorder. 2019. Webrecorder. https://webrecorder.io
[85] WebRTC. 2019. Optimum by Altice. https://webrtc.org/faq/#what-is-webrtc
[86] Williams. 2018. Adblock Plus and (a little) more. https://adblockplus.org/blog/

100-million-users-100-million-thank-yous

[87] Craig E Wills and Doruk C Uzunoglu. 2016. What ad blockers are (and are not)
doing. In Proceedings of the 2016 IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb).

[88] Savvas Zannettou, Jeremy Blackburn, Emiliano De Cristofaro, Michael Siriv-
ianos, and Gianluca Stringhini. 2018. Understanding web archiving services and
their (mis) use on social media. In Proceedings of the twelfth International AAAI
Conference on Web and Social Media(ICWSM).

[89] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. 2017.
Measuring and Disrupting Anti-Adblockers Using Differential Execution Analy-
sis. In Proceedings of the 2017 Network and Distributed System Security Sympo-
sium(NDSS).

[90] Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq, and
Weiteng Chen. 2019. ShadowBlock: A Lightweight and Stealthy Adblocking
Browser. In Proceedings of the 2019 World Wide Web Conference (WWW).

https://drafts.csswg.org/selectors-4/#has-pseudo
https://drafts.csswg.org/selectors-4/#has-pseudo
https://www.w3.org/
https://webrecorder.io
https://webrtc.org/faq/#what-is-webrtc
https://adblockplus.org/ blog/100-million-users-100-million-thank-yous
https://adblockplus.org/ blog/100-million-users-100-million-thank-yous

	Abstract
	1 Introduction
	2 Ad-Blocking Datasets
	2.1 D1: EasyList Dataset
	2.2 D2: Crowdsourced Report Dataset

	3 Methodology
	3.1 Linking Reports with EasyList
	3.2 Reproducing FPs
	3.3 Extracting FN Errors
	3.4 Websites Involved in the Reports

	4 ANALYSIS
	4.1 FP vs. FN Errors
	4.2 Websites Affected by FP and FN Errors
	4.3 Influence Time of FP Errors
	4.4 Causes of FP Errors
	4.5 Analysis of Filters causing FP Errors
	4.6 FN Errors Reported by the Crowd
	4.7 Websites with FN Errors

	5 Adversarial Evasion Attacks
	5.1 More-Studied Attacks
	5.2 Less-Studied Attacks
	5.3 Nonstudied Attacks

	6 Discussions
	7 Related Work
	8 Conclusion
	References

