
CADE: Detecting and Explaining Concept Drift Samples
for Security Applications

Limin Yang*, Wenbo Guo†, Qingying Hao*, Arridhana Ciptadi‡

Ali Ahmadzadeh‡, Xinyu Xing†, Gang Wang*

*University of Illinois at Urbana-Champaign †The Pennsylvania State University ‡Blue Hexagon
liminy2@illinois.edu, wzg13@ist.psu.edu, qhao2@illinois.edu, {arri, ali}@bluehexagon.ai, xxing@ist.psu.edu, gangw@illinois.edu

Abstract
Concept drift poses a critical challenge to deploy machine
learning models to solve practical security problems. Due
to the dynamic behavior changes of attackers (and/or the
benign counterparts), the testing data distribution is often
shifting from the original training data over time, causing
major failures to the deployed model.

To combat concept drift, we present a novel system CADE
aiming to 1) detect drifting samples that deviate from existing
classes, and 2) provide explanations to reason the detected
drift. Unlike traditional approaches (that require a large num-
ber of new labels to determine concept drift statistically), we
aim to identify individual drifting samples as they arrive. Rec-
ognizing the challenges introduced by the high-dimensional
outlier space, we propose to map the data samples into a
low-dimensional space and automatically learn a distance
function to measure the dissimilarity between samples. Using
contrastive learning, we can take full advantage of existing
labels in the training dataset to learn how to compare and
contrast pairs of samples. To reason the meaning of the de-
tected drift, we develop a distance-based explanation method.
We show that explaining “distance” is much more effective
than traditional methods that focus on explaining a “decision
boundary” in this problem context. We evaluate CADE with
two case studies: Android malware classification and network
intrusion detection. We further work with a security com-
pany to test CADE on its malware database. Our results show
that CADE can effectively detect drifting samples and provide
semantically meaningful explanations.

1 Introduction

Deploying machine learning based security applications can
be very challenging due to concept drift. Whether it is mal-
ware classification, intrusion detection, or online abuse detec-
tion [6, 12, 17, 42, 48], learning-based models work under a
“closed-world” assumption, expecting the testing data distribu-
tion to roughly match that of the training data. However, the

Training DataOriginal Classifier

Incoming Samples
...

labels

Attack-2

Attack-1

Benign

1 2

0

Detect Drifting Explain Drifting

Production

Space

Monitoring

Space

“Interpretation”

Facilitate Model Update

CADE

Figure 1: Drifting sample detection and explanation.

environments in which the models are deployed are usually
dynamically changing over time. Such changes may include
both organic behavior changes of benign players and mali-
cious mutations and adaptations of attackers. As a result, the
testing data distribution is shifting from the original training
data, which can cause serious failures to the models [23].

To address concept drift, most learning-based models re-
quire periodical re-training [36, 39, 52]. However, retraining
often needs labeling a large number of new samples (expen-
sive). More importantly, it is also difficult to determine when
the model should be retrained. Delayed retraining can leave
the outdated model vulnerable to new attacks.

We envision that combating concept drift requires estab-
lishing a monitoring system to examine the relationship be-
tween the incoming data streams and the training data (and/or
the current classifier). The high-level idea is illustrated in
Figure 1. While the original classifier is working in the pro-
duction space, another system should periodically check how
qualified the classifier is to make decisions on the incom-
ing data samples. A detection module (¶) can filter drifting
samples that are moving away from the training space. More
importantly, to reason the causes of the drifting (e.g., attacker
mutation, organic behavior changes, previous unknown sys-
tem bugs), we need an explanation method (·) to link the
detection decision to semantically meaningful features. These
two capabilities are essential to preparing a learning-based
security application for the open-world environment.

Prior works have explored the detection of drifting sam-
ples by directly checking the prediction con�dence of the
original classi�er (0) [32]. A low con�dence score could in-
dicate that the incoming sample is a drifting sample. However,
this con�dence score is a probability (sum up to 1.0) calcu-
lated based on the assumption that all the classes are known
(closed-world). A drifting sample that does not belong to any
existing classes might be assigned to a wrong class with high
con�dence (validated by existing works [25,32,37]). A more
recent work presents the idea to compute anon-conformity
measurebetween the incoming sample and each of the ex-
isting classes to determine �tness [38]. This non-conformity
measure is calculated based on a distance function to quantify
the dissimilarity between samples. However, we �nd that such
distance functions could easily lose effectiveness, especially
when the data is sparse with high dimensionality.

Our Method. In this paper, we present a new method for
detecting drifting samples, coupled with a novel method to
explain the detection decisions. Collectively, we build a sys-
tem calledCADE, which is short for “Contrastive Autoencoder
for Drifting detection and Explanation.” The key challenge is
to derive an effective distance function to measure the dissim-
ilarity of samples. Instead of arbitrarily picking the distance
function, we leverage the idea ofcontrastive learning[29] to
learn the distance function from existing training data, based
on existing labels. Given the training data (multiple classes)
of the original classi�er, we map the training samples into a
low-dimensional latent space. The map function is learned
by contrasting samples to enlarge the distances between sam-
ples of different classes, while reducing the distance between
samples in the same class. We show the resulting distance
function in the latent space can effectively detect and rank
drifting samples.

To explain a drifting sample, we identify a small set of im-
portant features that differentiate this sample from its nearest
class. A key observation is that traditional (supervised) expla-
nation methods do not work well [22,28,53,62]. The insight
is that supervised explanation methods require both classes
(drifting samples and existing class) to have suf�cient sam-
ples to estimate their distributions. However, this requirement
is dif�cult to meet, given the drifting sample is located in a
sparse space outside of training distribution. Instead, we �nd
it is more effective to derive explanations based ondistance
changes, i.e., features that cause the largest changes to the
distance between the drifting sample and its nearest class.

Evaluation. We evaluate our methods with two datasets,
including an Android malware dataset [7] and an intrusion
detection dataset released in 2018 [57]. Our evaluation shows
that our drifting detection method is highly accurate, with
an averageF1 score of 0.96 or higher, which outperforms
various baselines and existing methods. Our analysis also
demonstrates the bene�t of using contrastive learning to re-
duce the ambiguity of detection decisions. For the explanation

model, we perform both quantitative and qualitative evalua-
tions. Case studies also show that the selected features match
the semantic behaviors of the drifting samples.

Furthermore, we worked with our collaborators in a secu-
rity company to testCADEon their internal malware database.
As an initial test, we obtained a sample of 20,613 Windows
PE malware that appeared from August 2019 to February
2020 from 395 families. This allows us to test the system
performance with more malware families and in a diverse set-
ting. The results are promising. For example,CADEachieves
anF1 score of 0.95 when trained on 10 families and tested on
160 previously unseen families. This leads to the interest to
further test and deployCADEin a production system.

Contributions. This paper has three main contributions.

• We proposeCADEto complement existing supervised
learning based security applications to combat concept
drift. We introduce an effective method to detect drifting
samples based on contrastive representation learning.

• We illustrate the limitation of supervised explanation
methods in explaining outlier samples and introduce a
distance-based explanation method for this context.

• We extensively evaluate the proposed methods with two
applications. Our initial tests with a security company
show thatCADEis effective. We have released the code of
CADEhere1 to support future research.

2 Background and Problem Scope

In this section, we introduce the background for concept drift
under the contexts of security applications, and discuss the
limitations of some possible solutions.

Concept Drift. Supervised machine learning has been
used in many security contexts to train detection models.
Concept drift is a major challenge to these models when
deployed in practice. Concept drift occurs as the testing data
distribution deviates from the original training data, causing
a shift in the true decision boundary [23]. This often leads to
major errors in the original model over time.

To detect concept drift, researchers propose various tech-
niques, which mostly involve the collection of new sets of data
to statistically assess model behaviors [9,10,20,31]. For some
of these works, they also require the effort of data labeling. In
security applications, knowing the existence of new attacks
and collecting data about them are challenging in the �rst
place. Besides, labeling data is time-consuming and requires
substantial expertise. As such, it is impractical to assume that
most incoming data can be suf�ciently labeled.

Besides supervised models, semi-supervised anomaly de-
tection systems are not necessarily immune to concept drift.
For example, most network intrusion detection systems are

1https://github.com/whyisyoung/CADE

https://github.com/whyisyoung/CADE

learned on “normal” traf�c, and then used to detect incom-
ing traf�c that deviates from the learned “norm” as at-
tacks [24,34,48]. For such systems, they might detect previ-
ously unknown attacks; however, concept drift, especially in
benign traf�c, could easily cause model failures. Essentially,
intrusion detection is still a classi�cation problem,i.e., to dis-
tinguish normal traf�c from abnormal traf�c. Its training is
performed only with one category of data. This, to some ex-
tent, weakens the learning outcome. The systems still rely on
the assumption that the normal data hascovered all possible
cases– which is often violated in the testing phase [60].

Our Problem Scope. Instead of detecting concept drift
with well-prepared and fully labeled data, we focus on a more
practical scenario. As shown in Figure 1, we investigate in-
dividual samples to detect those that are shifted away from
the original training data. This allows us to detect drifting
samples and labels (a subset of) them as they arrive. Once we
accumulate drifting samples suf�ciently, we can assess the
need for model re-training.

In a multi-class classi�cation setting, there are two major
types of concept drift.Type A: the introduction of a new class:
drifting samples come from a new class that does not exist in
the training dataset. As such, the originally trained classi�er
is not quali�ed to classify the drifting samples;Type B: in-
class evolution: the drifting samples are still from the existing
classes, but their behavior patterns are signi�cantly different
from those in the training dataset. In this case, the original
classi�er can easily make mistakes on these drifting samples.

In this paper, we primarily focus on Type A concept drift,
i.e., the introduction of a new class in a multi-class setting.
Taking malware classi�cation for example (Figure 1), our goal
is to detectandinterpretdrifting samples from previously un-
seen malware families. Essentially, the drifting samples are
out-of-distribution samples with respect to all of the existing
classes in the training data. In Section 6, we explore adapt-
ing our solution to address Type B concept drift (in-class
evolution) and examine the generalizability of our methods.

Possible Solutions & Limitations. We brie�y discuss the
possible directions to address this problem and the limitations.

The �rst direction is to use theprediction probabilityof the
original classi�er. More speci�cally, a supervised classi�er
typically outputs a prediction probability (or con�dence) as a
side product of the prediction label [32]. For example, in deep
neural networks, a softmax function is often used to produce
a prediction probability which indicates the likelihood that
a given sample belongs to each of the existing classes (with
a sum of 1). As such, a low prediction probability might
indicate the incoming sample is different from the existing
training data. However, we argue that prediction probability
is unlikely to be effective in our problem context. The reason
is this probability re�ects therelative �tnessto the existing
classes (e.g., the sample �ts in classAbetter than classB). If
the sample comes from an entirely new class (neither classA

norB), the prediction probability could be vastly misleading.
Many previous studies [25, 32, 37] have demonstrated that
a testing sample from a new class can lead to a misleading
probability assignment (e.g., associating a wrong class with a
high probability). Fundamentally, the prediction probability
still inherits the “closed-world assumption” of the classi�er,
and thus is not suitable to detect drifting samples.

Compared to prediction probability, a more promising di-
rection is to assess a sample's �tness to a given class directly.
The idea is, instead of assessing whether the sample �ts in
classA better than classB, we assess how well this sample
�ts in class A compared to other training samples in class
A. For example, autoencoder [33] can be used to assess a
sample's �tness to a given distribution based on a reconstruc-
tion error. However, as an unsupervised method, it is dif�cult
for an autoencoder to learn an accurate representation of the
training distribution when ignoring the labels (see Section 4).
In a recent work, Jordaney et al. introduced a system called
Transcend [38]. It de�nes a “non-conformity measure” as the
�tness assessment. Transcend uses a credibilityp-value to
quantify how similar the testing samplexxx is to training sam-
ples that share the same class.p is the proportion of samples
in this class that are at least as dissimilar to other samples in
the same class asxxx. While this metric can pinpoint drifting
samples, such a system is highly dependent on a good def-
inition of “dissimilarity”. As we will show in Section 4, an
arbitrary dissimilarity measure (especially when data dimen-
sionality is high) can lead to bad performance.

3 Designing CADE

We propose a system calledCADEfor drift sample detection
and explanation. We start by describing the intuitions and
insights behind our designs, followed by the technical details
for each component.

3.1 Insights Behind Our Design

As shown in Figure 1, our system has two components to (¶)
detect drifting samples that are out of the training distribution;
and (·) explain the drifting samples to help analysts under-
stand the meaning of the drift. Through initial analysis, we
�nd both tasks face a common challenge: the drifting samples
are located in a sparse outlier space, which makes it dif�cult
to derive meaningful distance functions needed for both tasks.

First, detecting drifting samples requires learning a good
distance function to measure how “drifting samples” are dif-
ferent from existing distributions. However, the outlier space
is unboundedly large and sparse. For high-dimensional data,
the notion of distance starts to lose effectiveness due to the
“curse of dimensionality” [74]. Second, the goal of explana-
tion is to identify a small subset of important features that
most effectively differentiate the drifting sample from the

training data. As such, we also need an effective distance
function to measure the differences.

In the following, we design a drifting detection module and
an explanation module to jointly address these challenges.
At the high-level, we �rst usecontrastive learningto learn a
compressed representation of the training data. A key bene�t
of contrastive learning is that it can take advantage of existing
labels to achieve much-improved performance compared to
unsupervised methods such as autoencoders [33] and Princi-
pal Component Analysis (PCA) [2]. This allows us to learn
a distance function from the training data to detect drifting
samples (Section 3.2). For the explanation module, we will
describe a distance-based explanation formulation to address
the aforementioned challenges (Section 3.3).

3.2 Drifting Sample Detection

The drifting detection model monitors the incoming data sam-
ples to detect incoming samples that are out of the distribution
of the training data.

Contrastive Learning for Latent Representations. We
explore the idea of contrastive learning to learn a good rep-
resentation of the training data. Contrastive learning takes
advantage of theexisting labelsin the training data to learn
an effective distance function to measure the similarity (or
contrast) of different samples [16]. Unlike supervised classi-
�er, the goal of contrastive learning is not classifying samples
to known classes. It is learning how to compare two samples.

As shown in Figure 2, given the input samples (high dimen-
sional feature vectors), the contrastive learning model aims to
map them into a low-dimensional latent space. The model is
optimized such that, in the latent space, pairs of samples in the
same class have a smaller distance, and pairs of samples from
different classes have a larger distance. As such, the distance
metric in the latent space can re�ect the differences in pairs
of samples. Any new samples that exhibit a large distance to
all existing classes are candidate drifting samples.

To implement this idea, we use an autoencoder augmented
with contrastive loss. Autoencoder is a useful tool to learn a
compressed representation (with a reduced dimensionality)
of a given input distribution [33]. Formally, letxxx 2 Rq� 1 be a
sample from the given training set. We train an autoencoder
that contains an encoderf and a decoderh. Note thatf is
parameterized byqqq; h is parameterized byfff . We construct
the loss function as the following:

min
qqq;fff

Exxx kxxx� x̂xxk2
2 + l Exxxi ;xxx j

h
(1� yi j)d2

i j + yi j (m� di j)2
+

i
: (1)

Here, the �rst term is the reconstruction loss of the autoen-
coder. More speci�cally, the goal of the encoderf is to learn
a good representation of the original input. Given an inputxxx,
encoderf maps the original inputxxx to a lower-dimensional
representationzzz= f (xxx;qqq). Autoencoder ensures this latent

Figure 2: The high-level idea of contrastive learning.

representationzzz can be decoded to reconstruct the original
input with minimal reconstruction loss. Here,x̂xx 2 Rq� 1 is the
reconstruction of this original input,i.e., x̂xx = h(zzz). This loss
term represents the mean squared error betweenxxx andx̂xx.

The second term of Eqn. (1) refers to the contrastive loss,
which takes a pair of samples (xxxi , xxx j) and their relationship
yi j as input.yi j = 1, if the two samples are from the different
classes;yi j = 0, if the two samples are from the same class.
(�)+ is a short notation formax(0; �), anddi j is the Euclidean
distance between the latent space representationszzzi = f (xxxi ;q)
andzzzj = f (xxx j ;q), wherezzz2 Rd� 1 (d � p). This loss term
minimizes the distance ofxxxi andxxx j in the latent space if they
are from the same class, and maximizes their distance up
to a radius de�ned bym > 0, such that the dissimilar pairs
contribute to the loss function only when their distance is
within this radius.l is a hyper-parameter controlling the
weight of the second term in the loss function.

After contrastive learning, encoderf can map the input
samples to a low-dimensional latent space where each class
formstight groups(as shown in Figure 2). In this latent space,
the distance function can effectively identify new samples
drifting away from these groups.

MAD-based Drifting Sample Detection. After training
the contrastive autoencoder, we can use it to detect drift-
ing samples. Given a set ofK testing samplesf xxx(k)

t g (k =
1; : : : ;K), we seek to determine whether each samplexxx(k)

t is a
drifting sample with respect to existing classes in the training
data. The detection method is shown in Algorithm 1.

Suppose the training set hasN classes, and each class has
ni training samples, fori = 1;2; :::;N. We �rst use the encoder
to map all the training samples into the latent space (line 2–
4). For each classi, we calculate its centroidccci (by taking
the mean value for each dimension in a Euclidean space in
line 5). Given a testing samplexxx(k)

t , we also use the encoder
to map it to the latent space representationzzz(k)

t (line 14).
Then, we calculate the Euclidean distance between the testing
sample and each of the centroids:d(k)

i = kzzz(k)
t � cccik2 (line

16). Based on its distance to centroids, we determine if this
testing sample is out of distribution for each of theN classes.
Here, we make decisions based on the sample's distance to
the centroids instead of the sample's distance to the nearest
training samples. This is because the latter option can be
easily affected by the outliers in the training data.

Algorithm 1 Drift Detection with Contrastive Autoencoder.

Input: Training dataxxx(j)
i ; i = 1; : : : ;N; j = 1; : : : ;ni , N is the number of

classes,ni is the number of training samples in classi; testing dataxxx(k)
t ,

t refers to the testing set,k = 1, : : : , K, K is the total number of testing
samples; encoderf ; a constantb.

Output: Drifting score for each testing sampleA(k) , the closest classy(k)
t ,

centroid of each classccci , MAD i to each class.

1: for classi = 1 toN do
2: for j = 1 toni do
3: zzz(j)

i = f (xxx(j)
i ;qqq) . The latent representation ofxxx(j)

i .
4: end for
5: ccci = 1

ni
å ni

j= 1 zzz(j)
i . The centroid of classi.

6: for j = 1 toni do
7: d(j)

i = jjzzz(j)
i � ccci jj2 . The distance between sample and centroid.

8: end for
9: d̃i = median(d(j)

i), j = 1; : : : ;ni

10: MADi = b� median(jd(j)
i � d̃i j), j = 1; : : : ;ni

11: end for
12:
13: for k = 1 toK do
14: zzz(k)

t = f (xxx(k)
t ;qqq)

15: for classi = 1 toN do
16: d(k)

i = jjzzz(k)
t � ccci jj2

17: A(k)
i =

jd(k)
i � d̃i j
MAD i

18: end for
19: A(k) = min(A(k)

i), i = 1; : : : ;N
20: if A(k) > TMAD then . TMAD is set to 3.5 empirically [40].
21: xxx(k)

t is a potential drifting sample.
22: else
23: xxx(k)

t is a non-drifting sample.
24: end if
25:
26: y(k)

t = argmin
i

d(k)
i , i = 1; : : : ;N . The closest class forxxx(k)

t .

27: end for

To determine outliers based ond(k)
i , the challenge is that

different classes might have different levels of tightness, and
thus require different distance thresholds. Instead of manually
setting the absolute distance threshold for each class, we use
a method called Median Absolute Deviation (MAD) [40].
The idea is to estimate the data distribution within each
classi by calculatingMAD i (line 6–10), which is the me-
dian of the absolute deviation from the median of distance
d(j)

i (j = 1; : : : ;ni). Hered(j)
i depicts the latent distance be-

tween each sample in classi to its centroid, andni is the
number of samples in classi (line 7). Then based onMAD i ,
we can determine ifd(k)

i is large enough to make the testing

samplexxx(k)
t an outlier of classi (line 15–24). If the testing

sample is an outlier forall of theN classes, then it is deter-
mined as a drifting sample. Otherwise, we determine it is
an in-distribution sample and its closest class is determined
by the closest centroid (line 26). The advantage of MAD is
that every class has its own distance threshold to determine
outliers based on its in-class distribution. For instance, if a
cluster is more spread out, the threshold would be larger.

Figure 3: Illustration of the boundary-based explanation and
the distance-based explanation in our setup.

Note that MAD might suffer when a class does not have
enough samples as its median can be noisy. In our design,
contrastive learning can help to mitigate this issue since each
of the classes is mapped to a compact region in the latent
space which helps to stabilize the median.

Ranking Drifting Samples. As shown in Figure 1, drift-
ing samples might need further investigations by analysts to
interpret the meaning of the drifting. Given the limited time
of analysts, it is important to rank the drifting samples so that
analysts can focus on the most novel variants. We use a simple
approach to rank drifting samples based on their distance to
the nearest centroid (calculated in line 26). This allows us to
prioritize the investigation of drifting samples that are furthest
away from their nearest centroid.

3.3 Explaining Drifting Samples

The explanation module aims to identify the most important
features that drive a testing sample away from existing classes.
To be speci�c, given a drifting samplexxxt , and its nearest
classyt in the training set, we want to identify a small set of
features that makexxxt an outlier of classyt . To achieve this
goal, one instinctive reaction is to convert it to the problem
of explaining a supervised learning model, which is a well-
studied area. For example, we can approximate our drifting
detector (¶) as a classi�er, and derive explanations using
existing explaining methods developed for classi�ers [28,35,
53, 58, 62]. However, due to the high sparsity of the outlier
space, we �nd it dif�cult to move a drifting sample to cross
the decision boundary, and thus fail to derive meaningful
explanations. Motivated by this, we design a new explanation
method customized for drift detection, which explains the
distancebetween a drifting sample and the in-class samples
rather than thedecision boundary. Below, we �rst analyze the
“straightforward approach” and then describe our method.

Baseline Method: Boundary-based Explanation. Given
the rich literature on explaining supervised classi�ers, a
straightforward approach is to convert the drifting detection
module into a supervised learning model, and then run exist-
ing explanation algorithms. Supervised explanation methods
are to explain the decision boundary between two classes
(e.g., classes A and B). The goal is to identify a minimal set of
features withinxxxt , such that perturbing these features will let

xxxt cross the decision boundary. As is shown in Figure 3, class
A represents the in-distribution training samples fromyt , and
class B represents the detected drifting sample in the testing
set. The decision boundary is illustrated by the blue dashed
line (the decision boundary is shown in the form of a norm ball
since it is based on distance threshold). Given a drifting sam-
ple xxxt (denoted by a star in Figure 3), the explanation method
pulls the sample into the in-distribution class (i.e. the region
with gray canvas) by perturbing a small set of important fea-
tures.2 We implemented this idea using existing perturbation-
based supervised explanation methods [13,18,21,22] (imple-
mentation details in Appendix A).

The evaluation result later in Section 5 shows that this
approach is fundamentally limited. We believe the reasons are
two-fold. First, given the limited number of drifting samples,
it is dif�cult to derive an accurate approximation model for the
decision boundary. Second and more importantly, the outlier
space is much bigger than the in-distribution region. Given
the drifting samples are far away from the decision boundary,
it is dif�cult to �nd a small set of feature perturbations to take
the drifting sample to cross the decision boundary and enter
the in-distribution region. Without the ability to cross the
boundary, the explanation methods do not have the necessary
gradients (or feedback) to compute feature importance.

Our Method: Distance-based Explanation. Motivated
by this observation, we propose a new approach that identi�es
important features by explaining thedistance(i.e. the red
arrow in Figure 3). Unlike supervised classi�ers that make
decisions based on the decision boundary, the drift detection
model makes decisions based on the sample's distance to
centroids. As such, we aim to �nd a set of original features
that help to move the drifting samplexxxt toward the nearest
centroidcccyt . With this design, we no longer need to forcexxxt
to cross the boundary, which is hard to achieve. Instead, we
perturb the original features and observe thedistance changes
in the latent space.

To realize this idea, we need to �rst design a feature pertur-
bation mechanism. Most existing perturbation methods are
designed exclusively for images [18], the features of which
are numerical values. In our case, features inxxxt can be either
numerical or categorical, and thus directly applying existing
methods will produce ill-de�ned feature values. To ensure the
perturbations are meaningful for both numerical and categori-
cal features, we propose to perturbxxxt by replacing its feature
value with the value of the corresponding feature in a refer-
ence training samplexxx(c)

yt . Thisxxx(c)
yt is the training sample that

has the shortest latent distance to the centroidcccyt . As such,
our explanation goal is to identify a set of features, such that
substituting them with those inxxx(c)

yt will impose the highest
in�uence upon the distance betweenf (xxxt) andcccyt . Replacing

2Note that we do not perform feature perturbation in the latent space,
because the latent features do not carry semantic meanings. Instead, we select
features in the original input space.

the feature values with those ofxxx(c)
yt also helps to ensure the

perturbed sample is moving towards the rough direction of the
centroid. As before, the perturbation is done in the original
feature space where features have semantic meanings.

We use anmmm2 Rq� 1 to represent the important features, in
which mmmi = 1 means(xxxt) i is replaced by the value of(xxx(c)

yt) i
andmmmi = 0 means we keep the value of(xxxt) i unchanged. In
other words,mmmi = 1 indicates theith feature is selected as
the important one. Each element in this feature maskmmmi can
be sampled from a Bernoulli distribution with probability
pi . As such, we could guarantee thatmmmi equals to either1
and0. Then, our goal is transformed into solving thepi for
i = 1;2; :::;q. Technically, this can be achieved by minimizing
the following objective function with respect top1:q.

Emmm� Q(ppp)kẑzzt � cccyt k2 + l 1R(mmm;bbb);

ẑzzt = f (xxxt � (1� mmm� bbb)+ xxx(c)
yt � (mmm� bbb)) ;

R(mmm;bbb) = kmmm� bbbk1 + kmmm� bbbk2; Q(ppp) =
q

Õ
i= 1

p(mmmi j pi):

(2)

Note that� denotes the element-wise multiplication;ẑzzt rep-
resents the latent vector of the perturbed sample. Given the
equation above, directly computingmmm is dif�cult due to its
high dimensionality. To speed up the search, we introduce a
�lter bbb to pre-�lter out features that are not worth considering.
We set(bbb) i = 0, if (xxxt) i and(xxx(c)

yt) i are the same. In other
words, if a feature value ofxxxt is already the same as that of
the reference samplexxx(c)

yt , then this feature is ruled out in the
optimization (since it has no impact on distance change). In
this way,ẑzzt = f (xxxt � (1� mmm� bbb)+ xxx(c)

yt � (mmm� bbb)) represents
the latent vector of the perturbed sample.

In Eqn.(2), the �rst term in the loss function aims to mini-
mize thelatent-space distancebetween the perturbed sample
ẑzzt and the centroidcccyt of the yt class. Each element inmmm
is sampled from a Bernoulli distribution parameterized by
pi . Here, we useQ(ppp) to represent their joint distribution.3

For the second term,l is a hyper-parameter that controls
the strength of the elastic-net regularizationR(�), which re-
stricts the number of non-zero elements inmmm. By minimizing
R(mmm;bbb), the optimization procedure selects a minimum subset
of important features.

Note that Bernoulli distribution is discrete, which means
the gradient ofmmmi with respect topi (i.e. ¶mmmi

¶pi
) is not well de-

�ned. We cannot solve the optimization problem in Eqn. 2 by
using a gradient-based optimization method. To tackle this
challenge, we apply the change-of-variable trick introduced
in [45]. We enable the gradient computation by replacing
the Bernoulli distribution with its continuous approximation
(i.e. concrete distribution) parameterized bypi . Then we can
solve the parametersp1:q through a gradient-based optimiza-
tion method (we use Adam optimizer in this paper).

3We assume each feature is independently drawn from a distinct Bernoulli
distribution.

Id Family # of Samples
0 FakeInstaller 925
1 DroidKungFu 667
2 Plankton 625
3 GingerMaster 339
4 BaseBridge 330
5 Iconosys 152
6 Kmin 147
7 FakeDoc 132
Total: 3,317

Table 1: Android malware samples from the Drebin dataset.

4 Evaluation: Drifting Detection

In this section, we evaluate our system using two security ap-
plications: Android malware family attribution, and network
intrusion detection. In this current section (Section 4), we
focus on the evaluation of the drifting detection module. We
will evaluate the explanation module in Section 5. After these
controlled experiments, we tested our system with a security
company on their malware database (Section 7).

4.1 Experimental Setup and Datasets

Android Malware Attribution. We use the Drebin
dataset [7] to explore the malware family attribution problem.
The original classi�er (module0 in Figure 1) is a multilayer
perceptron (MLP) classi�er. It identi�es which family a mal-
ware sample belongs to. The Drebin dataset contains 5,560
Android malware samples. For this evaluation, we select 8
families4 where each family has at least 100 malware samples
(3,317 samples in total) as shown in Table 1.

To evaluate the drifting sample detection module, for each
experiment, we pick one of the 8 families as thepreviously
unseen family. For example, suppose we pick FakeDoc (fam-
ily 7) as the previous unseen family. We split the other seven
families into training and testing sets, and add FakeDoconly
to the testing set. In this way, FakeDoc is not available dur-
ing training. Our goal is to correctly identify samples from
FakeDoc as drifting samples in the testing time.

We split the training-testing sets with a ratio of 80:20. The
split is based on the timestamp (malware creation time), which
is recommended by several works [52, 65] to simulate a re-
alistic setting. Time-based split also means we cannot use
any new features that only appear in the testing set for model
training. This leaves us with 7,218 features. We then use
scikit-learn's VarianceThreshold function [51] to remove fea-
tures with very low variance (i.e., < 0.003), which creates a
�nal set of 1,340 features.

4Two families FakeInstaller and Opfake are very similar in terms of their
nature of attacks. There is strong disagreement among AV-engines regarding
their family labels,i.e., the samples are labeled as one family by some engines
but are labeled as the other family by other engines. As such, we only included
FakeInstaller (Table 1).

Id Family # of Flows
0 Benign 66,245
1 SSH-Bruteforce 11,732
2 DoS-Hulk 43,487
3 In�ltration 9,238
Total: 130,702

Table 2: Network intrusion dataset: 3 network intrusion
classes and 1 benign class from the IDS2018 dataset.

To demonstrate the generalizability of results, we iteratively
select each of the malware families to be the “unseen family”
and repeat the experiments.

Network Intrusion Detection. We use a network intru-
sion dataset [57], which we refer to as IDS2018. The dataset
contains different types of network traces generated by known
attacks. For our evaluation, we select the benign class (one
day's traf�c) and 3 different attack classes: SSH-Bruteforce,
Dos-Hulk, and In�ltration. SSH-Bruteforce is a brute-force
attack to guess the SSH login password. DoS-Hulk attack
aims to �ood the targeted machine with super�uous requests
in an attempt to make the machine temporally unavailable.
In�ltration attack �rst sends an email with a malicious attach-
ment to exploit an on-host application's vulnerability, and
then leverages the backdoor to run port-scan to discover more
vulnerabilities. We refer interested readers to [57] for more
details about the attacks. To speed up the experiments and
test different setups, we use 10% of their traf�c for the ex-
perimental dataset (Table 2). In Appendix D, we show that
more traf�c only increases the computational overhead and
has a negligible in�uence on the performance of the selected
methods.

We iteratively pick one of the attack families as the pre-
viously unseen family and only include this family in the
testing set. We repeat the experiments to report the average
performance. We split the train-test sets with a ratio of 80:20.
Note that features in the IDS2018 dataset need to be further
normalized and encoded. To be realistic, we only use the
training data to build the feature encoding scheme. At the
high-level, each sample represents a network �ow. Categori-
cal features such as “destination port” and “network protocol”
are encoded with one-hot encoding. The other 77 statistical
features are normalized between 0 and 1 with a MinMaxS-
caler. Each network �ow has 83 features. The detailed feature
engineering steps are available in the documentation of our
released code.

Evaluation Metric. For the drifting detection module
(module¶ in Figure 1), the positive samples are samples
in the unseen family in the testing set. The negative samples
are the rest of the testing samples from the known families.
Given a ranked list of detected samples, we simulate an an-
alyst inspecting samples from the top of the list. As we go
down the list, we calculate three evaluation metrics: preci-
sion, recall, andF1 score.Precisionmeasures the ratio of true

(a)CADE (b) Transcend (c) Vanilla AE
Figure 4: Precision and recall vs. number of inspected samples (detected drifting samples are ranked by the respective method).

Method Drebin (Avg� Std) IDS2018 (Avg� Std)
Precision Recall F1 Norm. Effort Precision Recall F1 Norm. Effort

Vanilla AE 0.63� 0.17 0.88� 0.13 0.72� 0.15 1.48� 0.31 0.61� 0.16 0.99� 0.00 0.74� 0.12 1.74� 0.40
Transcend 0.76� 0.19 0.90� 0.14 0.80� 0.12 1.29� 0.45 0.64� 0.45 0.67� 0.47 0.65� 0.46 1.45� 0.57

CADE 0.96� 0.05 0.96� 0.04 0.96� 0.03 1.00� 0.09 0.98� 0.02 0.93� 0.09 0.96� 0.06 0.95� 0.07

Table 3: Drifting detection results for Drebin and IDS2018 datasets. We compareCADEwith two baselines Transcend [38] and
Vanilla AE. For each evaluation metric, we report the mean value and the standard deviation across all the settings.

Figure 5:F1 scores of drifting
detection.

Figure 6: Normalized investi-
gation efforts.

unseen-family samples out of the inspected samples.Recall
measures the ratio of unseen-family samples that are suc-
cessfully discovered by the detection module out of all the
unseen-family samples.F1 scoreis the harmonic mean of pre-
cision and recall:F1 = 2� precision� recall

precision+ recall . Finally, to quantify
the efforts of inspection, we de�ne a metric calledinspecting
effort, which is the total number of inspected samples, nor-
malized by the number of true unseen family samples in the
testing set.

Baseline Methods. We include two main baselines. The
�rst baseline is a standard Vanilla autoencoder [33], which
is used to illustrate the bene�t of contrastive learning. We
set the Vanilla autoencoder (AE) to have the same number
of layers and output dimensionality asCADE. We use it to
perform dimension reduction to map the inputs into a latent
space where we use the same MAD method to detect and
rank drifting samples. The difference between this baseline
andCADEis that the baseline does not perform contrastive
learning. The hyperparameter setting is in Appendix B.

The secondbaseline is Transcend [38]. As described in
Section 2, Transcend de�nes a “non-conformity measure” to
quantify how well the incoming sample �ts into the predicted
class, and calculate a credibilityp-value to determine if the
incoming sample is a drifting sample. We obtain the source

code of Transcend from the authors and follow the paper to
adapt the implementation to support multi-class classi�ca-
tion (the original code only supports binary classi�cation).
Speci�cally, we initialize the non-conformity measure with
� p wherep is the softmax output probability indicating the
likelihood that a testing sample belongs to a given family.
Then we calculate the credibilityp-value for a testing sample.
If the p-value is near zero for all existing families, we consider
it as a drifting sample. We rank drifting samples based on the
maximum credibilityp-value. Note that we did not use other
OOD detection methods [14,41,49] as our baseline mainly
because they work in a different setup compared withCADE
and Transcend. More speci�cally, these methods requirean
auxiliary OOD datasetin the training process and/ormodi-
fying the original classi�er. These requirements are dif�cult
to meet for malware classi�ers in a production environment
(detailed discussions are in Section 9).

4.2 Evaluation Results

In the following, we �rst compare the drifting detection per-
formance ofCADEwith baselines and evaluate the impact of
contrastive learning. Then, we perform case studies to investi-
gate the potential reasons for detection errors.

Drifting Sample Detection Performance. We �rst use
one experiment setting to explain our evaluation process.
Take the Drebin dataset for example. Suppose we use family
Iconosys as the previously unseen family in the testing set.
After training the detection model (without any samples of
Iconosys), we use it to detect and rank the drifting samples. To
evaluate the quality of the ranked list, we simulate an analyst
inspecting samples from the top of the list.

Figure 4a shows that, as we inspect more drifting samples
(up to 150 samples), the precision maintains at a high level
(over 0.97) while the recall gradually reaches 100%. Combin-

	Introduction
	Background and Problem Scope
	Designing CADE
	Insights Behind Our Design
	Drifting Sample Detection
	Explaining Drifting Samples

	Evaluation: Drifting Detection
	Experimental Setup and Datasets
	Evaluation Results

	Evaluation: Explaining Drifting Samples
	Experimental Setup
	Fidelity Evaluation Results
	Crossing the Decision Boundary
	Case Studies

	Evaluation: In-class Evolution
	Real-world Test on PE Malware
	Discussion
	Related work
	Conclusion

