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Abstract
Concept drift poses a critical challenge to deploy machine
learning models to solve practical security problems. Due
to the dynamic behavior changes of attackers (and/or the
benign counterparts), the testing data distribution is often
shifting from the original training data over time, causing
major failures to the deployed model.

To combat concept drift, we present a novel system CADE
aiming to 1) detect drifting samples that deviate from existing
classes, and 2) provide explanations to reason the detected
drift. Unlike traditional approaches (that require a large num-
ber of new labels to determine concept drift statistically), we
aim to identify individual drifting samples as they arrive. Rec-
ognizing the challenges introduced by the high-dimensional
outlier space, we propose to map the data samples into a
low-dimensional space and automatically learn a distance
function to measure the dissimilarity between samples. Using
contrastive learning, we can take full advantage of existing
labels in the training dataset to learn how to compare and
contrast pairs of samples. To reason the meaning of the de-
tected drift, we develop a distance-based explanation method.
We show that explaining “distance” is much more effective
than traditional methods that focus on explaining a “decision
boundary” in this problem context. We evaluate CADE with
two case studies: Android malware classification and network
intrusion detection. We further work with a security com-
pany to test CADE on its malware database. Our results show
that CADE can effectively detect drifting samples and provide
semantically meaningful explanations.

1 Introduction

Deploying machine learning based security applications can
be very challenging due to concept drift. Whether it is mal-
ware classification, intrusion detection, or online abuse detec-
tion [6, 12, 17, 42, 48], learning-based models work under a
“closed-world” assumption, expecting the testing data distribu-
tion to roughly match that of the training data. However, the
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Figure 1: Drifting sample detection and explanation.

environments in which the models are deployed are usually
dynamically changing over time. Such changes may include
both organic behavior changes of benign players and mali-
cious mutations and adaptations of attackers. As a result, the
testing data distribution is shifting from the original training
data, which can cause serious failures to the models [23].

To address concept drift, most learning-based models re-
quire periodical re-training [36, 39, 52]. However, retraining
often needs labeling a large number of new samples (expen-
sive). More importantly, it is also difficult to determine when
the model should be retrained. Delayed retraining can leave
the outdated model vulnerable to new attacks.

We envision that combating concept drift requires estab-
lishing a monitoring system to examine the relationship be-
tween the incoming data streams and the training data (and/or
the current classifier). The high-level idea is illustrated in
Figure 1. While the original classifier is working in the pro-
duction space, another system should periodically check how
qualified the classifier is to make decisions on the incom-
ing data samples. A detection module (¶) can filter drifting
samples that are moving away from the training space. More
importantly, to reason the causes of the drifting (e.g., attacker
mutation, organic behavior changes, previous unknown sys-
tem bugs), we need an explanation method (·) to link the
detection decision to semantically meaningful features. These
two capabilities are essential to preparing a learning-based
security application for the open-world environment.



Prior works have explored the detection of drifting sam-
ples by directly checking the prediction confidence of the
original classifier ( 0 ) [32]. A low confidence score could in-
dicate that the incoming sample is a drifting sample. However,
this confidence score is a probability (sum up to 1.0) calcu-
lated based on the assumption that all the classes are known
(closed-world). A drifting sample that does not belong to any
existing classes might be assigned to a wrong class with high
confidence (validated by existing works [25, 32, 37]). A more
recent work presents the idea to compute a non-conformity
measure between the incoming sample and each of the ex-
isting classes to determine fitness [38]. This non-conformity
measure is calculated based on a distance function to quantify
the dissimilarity between samples. However, we find that such
distance functions could easily lose effectiveness, especially
when the data is sparse with high dimensionality.

Our Method. In this paper, we present a new method for
detecting drifting samples, coupled with a novel method to
explain the detection decisions. Collectively, we build a sys-
tem called CADE, which is short for “Contrastive Autoencoder
for Drifting detection and Explanation.” The key challenge is
to derive an effective distance function to measure the dissim-
ilarity of samples. Instead of arbitrarily picking the distance
function, we leverage the idea of contrastive learning [29] to
learn the distance function from existing training data, based
on existing labels. Given the training data (multiple classes)
of the original classifier, we map the training samples into a
low-dimensional latent space. The map function is learned
by contrasting samples to enlarge the distances between sam-
ples of different classes, while reducing the distance between
samples in the same class. We show the resulting distance
function in the latent space can effectively detect and rank
drifting samples.

To explain a drifting sample, we identify a small set of im-
portant features that differentiate this sample from its nearest
class. A key observation is that traditional (supervised) expla-
nation methods do not work well [22, 28, 53, 62]. The insight
is that supervised explanation methods require both classes
(drifting samples and existing class) to have sufficient sam-
ples to estimate their distributions. However, this requirement
is difficult to meet, given the drifting sample is located in a
sparse space outside of training distribution. Instead, we find
it is more effective to derive explanations based on distance
changes, i.e., features that cause the largest changes to the
distance between the drifting sample and its nearest class.

Evaluation. We evaluate our methods with two datasets,
including an Android malware dataset [7] and an intrusion
detection dataset released in 2018 [57]. Our evaluation shows
that our drifting detection method is highly accurate, with
an average F1 score of 0.96 or higher, which outperforms
various baselines and existing methods. Our analysis also
demonstrates the benefit of using contrastive learning to re-
duce the ambiguity of detection decisions. For the explanation

model, we perform both quantitative and qualitative evalua-
tions. Case studies also show that the selected features match
the semantic behaviors of the drifting samples.

Furthermore, we worked with our collaborators in a secu-
rity company to test CADE on their internal malware database.
As an initial test, we obtained a sample of 20,613 Windows
PE malware that appeared from August 2019 to February
2020 from 395 families. This allows us to test the system
performance with more malware families and in a diverse set-
ting. The results are promising. For example, CADE achieves
an F1 score of 0.95 when trained on 10 families and tested on
160 previously unseen families. This leads to the interest to
further test and deploy CADE in a production system.

Contributions. This paper has three main contributions.

• We propose CADE to complement existing supervised
learning based security applications to combat concept
drift. We introduce an effective method to detect drifting
samples based on contrastive representation learning.

• We illustrate the limitation of supervised explanation
methods in explaining outlier samples and introduce a
distance-based explanation method for this context.

• We extensively evaluate the proposed methods with two
applications. Our initial tests with a security company
show that CADE is effective. We have released the code of
CADE here1 to support future research.

2 Background and Problem Scope

In this section, we introduce the background for concept drift
under the contexts of security applications, and discuss the
limitations of some possible solutions.

Concept Drift. Supervised machine learning has been
used in many security contexts to train detection models.
Concept drift is a major challenge to these models when
deployed in practice. Concept drift occurs as the testing data
distribution deviates from the original training data, causing
a shift in the true decision boundary [23]. This often leads to
major errors in the original model over time.

To detect concept drift, researchers propose various tech-
niques, which mostly involve the collection of new sets of data
to statistically assess model behaviors [9,10,20,31]. For some
of these works, they also require the effort of data labeling. In
security applications, knowing the existence of new attacks
and collecting data about them are challenging in the first
place. Besides, labeling data is time-consuming and requires
substantial expertise. As such, it is impractical to assume that
most incoming data can be sufficiently labeled.

Besides supervised models, semi-supervised anomaly de-
tection systems are not necessarily immune to concept drift.
For example, most network intrusion detection systems are

1https://github.com/whyisyoung/CADE

https://github.com/whyisyoung/CADE


learned on “normal” traffic, and then used to detect incom-
ing traffic that deviates from the learned “norm” as at-
tacks [24, 34, 48]. For such systems, they might detect previ-
ously unknown attacks; however, concept drift, especially in
benign traffic, could easily cause model failures. Essentially,
intrusion detection is still a classification problem, i.e., to dis-
tinguish normal traffic from abnormal traffic. Its training is
performed only with one category of data. This, to some ex-
tent, weakens the learning outcome. The systems still rely on
the assumption that the normal data has covered all possible
cases – which is often violated in the testing phase [60].

Our Problem Scope. Instead of detecting concept drift
with well-prepared and fully labeled data, we focus on a more
practical scenario. As shown in Figure 1, we investigate in-
dividual samples to detect those that are shifted away from
the original training data. This allows us to detect drifting
samples and labels (a subset of) them as they arrive. Once we
accumulate drifting samples sufficiently, we can assess the
need for model re-training.

In a multi-class classification setting, there are two major
types of concept drift. Type A: the introduction of a new class:
drifting samples come from a new class that does not exist in
the training dataset. As such, the originally trained classifier
is not qualified to classify the drifting samples; Type B: in-
class evolution: the drifting samples are still from the existing
classes, but their behavior patterns are significantly different
from those in the training dataset. In this case, the original
classifier can easily make mistakes on these drifting samples.

In this paper, we primarily focus on Type A concept drift,
i.e., the introduction of a new class in a multi-class setting.
Taking malware classification for example (Figure 1), our goal
is to detect and interpret drifting samples from previously un-
seen malware families. Essentially, the drifting samples are
out-of-distribution samples with respect to all of the existing
classes in the training data. In Section 6, we explore adapt-
ing our solution to address Type B concept drift (in-class
evolution) and examine the generalizability of our methods.

Possible Solutions & Limitations. We briefly discuss the
possible directions to address this problem and the limitations.

The first direction is to use the prediction probability of the
original classifier. More specifically, a supervised classifier
typically outputs a prediction probability (or confidence) as a
side product of the prediction label [32]. For example, in deep
neural networks, a softmax function is often used to produce
a prediction probability which indicates the likelihood that
a given sample belongs to each of the existing classes (with
a sum of 1). As such, a low prediction probability might
indicate the incoming sample is different from the existing
training data. However, we argue that prediction probability
is unlikely to be effective in our problem context. The reason
is this probability reflects the relative fitness to the existing
classes (e.g., the sample fits in class A better than class B). If
the sample comes from an entirely new class (neither class A

nor B), the prediction probability could be vastly misleading.
Many previous studies [25, 32, 37] have demonstrated that
a testing sample from a new class can lead to a misleading
probability assignment (e.g., associating a wrong class with a
high probability). Fundamentally, the prediction probability
still inherits the “closed-world assumption” of the classifier,
and thus is not suitable to detect drifting samples.

Compared to prediction probability, a more promising di-
rection is to assess a sample’s fitness to a given class directly.
The idea is, instead of assessing whether the sample fits in
class A better than class B, we assess how well this sample
fits in class A compared to other training samples in class
A. For example, autoencoder [33] can be used to assess a
sample’s fitness to a given distribution based on a reconstruc-
tion error. However, as an unsupervised method, it is difficult
for an autoencoder to learn an accurate representation of the
training distribution when ignoring the labels (see Section 4).
In a recent work, Jordaney et al. introduced a system called
Transcend [38]. It defines a “non-conformity measure” as the
fitness assessment. Transcend uses a credibility p-value to
quantify how similar the testing sample xxx is to training sam-
ples that share the same class. p is the proportion of samples
in this class that are at least as dissimilar to other samples in
the same class as xxx. While this metric can pinpoint drifting
samples, such a system is highly dependent on a good def-
inition of “dissimilarity”. As we will show in Section 4, an
arbitrary dissimilarity measure (especially when data dimen-
sionality is high) can lead to bad performance.

3 Designing CADE

We propose a system called CADE for drift sample detection
and explanation. We start by describing the intuitions and
insights behind our designs, followed by the technical details
for each component.

3.1 Insights Behind Our Design

As shown in Figure 1, our system has two components to (¶)
detect drifting samples that are out of the training distribution;
and (·) explain the drifting samples to help analysts under-
stand the meaning of the drift. Through initial analysis, we
find both tasks face a common challenge: the drifting samples
are located in a sparse outlier space, which makes it difficult
to derive meaningful distance functions needed for both tasks.

First, detecting drifting samples requires learning a good
distance function to measure how “drifting samples” are dif-
ferent from existing distributions. However, the outlier space
is unboundedly large and sparse. For high-dimensional data,
the notion of distance starts to lose effectiveness due to the
“curse of dimensionality” [74]. Second, the goal of explana-
tion is to identify a small subset of important features that
most effectively differentiate the drifting sample from the



training data. As such, we also need an effective distance
function to measure the differences.

In the following, we design a drifting detection module and
an explanation module to jointly address these challenges.
At the high-level, we first use contrastive learning to learn a
compressed representation of the training data. A key benefit
of contrastive learning is that it can take advantage of existing
labels to achieve much-improved performance compared to
unsupervised methods such as autoencoders [33] and Princi-
pal Component Analysis (PCA) [2]. This allows us to learn
a distance function from the training data to detect drifting
samples (Section 3.2). For the explanation module, we will
describe a distance-based explanation formulation to address
the aforementioned challenges (Section 3.3).

3.2 Drifting Sample Detection
The drifting detection model monitors the incoming data sam-
ples to detect incoming samples that are out of the distribution
of the training data.

Contrastive Learning for Latent Representations. We
explore the idea of contrastive learning to learn a good rep-
resentation of the training data. Contrastive learning takes
advantage of the existing labels in the training data to learn
an effective distance function to measure the similarity (or
contrast) of different samples [16]. Unlike supervised classi-
fier, the goal of contrastive learning is not classifying samples
to known classes. It is learning how to compare two samples.

As shown in Figure 2, given the input samples (high dimen-
sional feature vectors), the contrastive learning model aims to
map them into a low-dimensional latent space. The model is
optimized such that, in the latent space, pairs of samples in the
same class have a smaller distance, and pairs of samples from
different classes have a larger distance. As such, the distance
metric in the latent space can reflect the differences in pairs
of samples. Any new samples that exhibit a large distance to
all existing classes are candidate drifting samples.

To implement this idea, we use an autoencoder augmented
with contrastive loss. Autoencoder is a useful tool to learn a
compressed representation (with a reduced dimensionality)
of a given input distribution [33]. Formally, let xxx ∈ Rq×1 be a
sample from the given training set. We train an autoencoder
that contains an encoder f and a decoder h. Note that f is
parameterized by θθθ; h is parameterized by φφφ. We construct
the loss function as the following:

min
θθθ,φφφ

Exxx ‖xxx− x̂xx‖2
2 +λExxxi,xxx j

[
(1− yi j)d2

i j + yi j(m−di j)
2
+

]
. (1)

Here, the first term is the reconstruction loss of the autoen-
coder. More specifically, the goal of the encoder f is to learn
a good representation of the original input. Given an input xxx,
encoder f maps the original input xxx to a lower-dimensional
representation zzz = f (xxx;θθθ). Autoencoder ensures this latent
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Figure 2: The high-level idea of contrastive learning.

representation zzz can be decoded to reconstruct the original
input with minimal reconstruction loss. Here, x̂xx ∈ Rq×1 is the
reconstruction of this original input, i.e., x̂xx = h(zzz). This loss
term represents the mean squared error between xxx and x̂xx.

The second term of Eqn. (1) refers to the contrastive loss,
which takes a pair of samples (xxxi, xxx j) and their relationship
yi j as input. yi j = 1, if the two samples are from the different
classes; yi j = 0, if the two samples are from the same class.
(·)+ is a short notation for max(0, ·), and di j is the Euclidean
distance between the latent space representations zzzi = f (xxxi;θ)
and zzz j = f (xxx j;θ), where zzz ∈ Rd×1 (d� p). This loss term
minimizes the distance of xxxi and xxx j in the latent space if they
are from the same class, and maximizes their distance up
to a radius defined by m > 0, such that the dissimilar pairs
contribute to the loss function only when their distance is
within this radius. λ is a hyper-parameter controlling the
weight of the second term in the loss function.

After contrastive learning, encoder f can map the input
samples to a low-dimensional latent space where each class
forms tight groups (as shown in Figure 2). In this latent space,
the distance function can effectively identify new samples
drifting away from these groups.

MAD-based Drifting Sample Detection. After training
the contrastive autoencoder, we can use it to detect drift-
ing samples. Given a set of K testing samples {xxx(k)t } (k =

1, . . . ,K), we seek to determine whether each sample xxx(k)t is a
drifting sample with respect to existing classes in the training
data. The detection method is shown in Algorithm 1.

Suppose the training set has N classes, and each class has
ni training samples, for i = 1,2, ...,N. We first use the encoder
to map all the training samples into the latent space (line 2–
4). For each class i, we calculate its centroid ccci (by taking
the mean value for each dimension in a Euclidean space in
line 5). Given a testing sample xxx(k)t , we also use the encoder
to map it to the latent space representation zzz(k)t (line 14).
Then, we calculate the Euclidean distance between the testing
sample and each of the centroids: d(k)

i = ‖zzz(k)t − ccci‖2 (line
16). Based on its distance to centroids, we determine if this
testing sample is out of distribution for each of the N classes.
Here, we make decisions based on the sample’s distance to
the centroids instead of the sample’s distance to the nearest
training samples. This is because the latter option can be
easily affected by the outliers in the training data.



Algorithm 1 Drift Detection with Contrastive Autoencoder.

Input: Training data xxx( j)
i , i = 1, . . . ,N, j = 1, . . . ,ni, N is the number of

classes, ni is the number of training samples in class i; testing data xxx(k)t ,
t refers to the testing set, k = 1, . . . , K, K is the total number of testing
samples; encoder f ; a constant b.

Output: Drifting score for each testing sample A(k), the closest class y(k)t ,
centroid of each class ccci, MADi to each class.

1: for class i = 1 to N do
2: for j = 1 to ni do
3: zzz( j)

i = f (xxx( j)
i ;θθθ) . The latent representation of xxx( j)

i .
4: end for
5: ccci =

1
ni

∑
ni
j=1 zzz( j)

i . The centroid of class i.
6: for j = 1 to ni do
7: d( j)

i = ||zzz( j)
i − ccci||2 . The distance between sample and centroid.

8: end for
9: d̃i = median(d( j)

i ), j = 1, . . . ,ni

10: MADi = b∗median(|d( j)
i − d̃i|), j = 1, . . . ,ni

11: end for
12:
13: for k = 1 to K do
14: zzz(k)t = f (xxx(k)t ;θθθ)
15: for class i = 1 to N do
16: d(k)

i = ||zzz(k)t − ccci||2

17: A(k)
i =

|d(k)i −d̃i |
MADi

18: end for
19: A(k) = min(A(k)

i ), i = 1, . . . ,N
20: if A(k) > TMAD then . TMAD is set to 3.5 empirically [40].
21: xxx(k)t is a potential drifting sample.
22: else
23: xxx(k)t is a non-drifting sample.
24: end if
25:
26: y(k)t = argmin

i
d(k)

i , i = 1, . . . ,N . The closest class for xxx(k)t .

27: end for

To determine outliers based on d(k)
i , the challenge is that

different classes might have different levels of tightness, and
thus require different distance thresholds. Instead of manually
setting the absolute distance threshold for each class, we use
a method called Median Absolute Deviation (MAD) [40].
The idea is to estimate the data distribution within each
class i by calculating MADi (line 6–10), which is the me-
dian of the absolute deviation from the median of distance
d( j)

i ( j = 1, . . . ,ni). Here d( j)
i depicts the latent distance be-

tween each sample in class i to its centroid, and ni is the
number of samples in class i (line 7). Then based on MADi,
we can determine if d(k)

i is large enough to make the testing
sample xxx(k)t an outlier of class i (line 15–24). If the testing
sample is an outlier for all of the N classes, then it is deter-
mined as a drifting sample. Otherwise, we determine it is
an in-distribution sample and its closest class is determined
by the closest centroid (line 26). The advantage of MAD is
that every class has its own distance threshold to determine
outliers based on its in-class distribution. For instance, if a
cluster is more spread out, the threshold would be larger.
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Figure 3: Illustration of the boundary-based explanation and
the distance-based explanation in our setup.

Note that MAD might suffer when a class does not have
enough samples as its median can be noisy. In our design,
contrastive learning can help to mitigate this issue since each
of the classes is mapped to a compact region in the latent
space which helps to stabilize the median.

Ranking Drifting Samples. As shown in Figure 1, drift-
ing samples might need further investigations by analysts to
interpret the meaning of the drifting. Given the limited time
of analysts, it is important to rank the drifting samples so that
analysts can focus on the most novel variants. We use a simple
approach to rank drifting samples based on their distance to
the nearest centroid (calculated in line 26). This allows us to
prioritize the investigation of drifting samples that are furthest
away from their nearest centroid.

3.3 Explaining Drifting Samples
The explanation module aims to identify the most important
features that drive a testing sample away from existing classes.
To be specific, given a drifting sample xxxt , and its nearest
class yt in the training set, we want to identify a small set of
features that make xxxt an outlier of class yt . To achieve this
goal, one instinctive reaction is to convert it to the problem
of explaining a supervised learning model, which is a well-
studied area. For example, we can approximate our drifting
detector (¶) as a classifier, and derive explanations using
existing explaining methods developed for classifiers [28, 35,
53, 58, 62]. However, due to the high sparsity of the outlier
space, we find it difficult to move a drifting sample to cross
the decision boundary, and thus fail to derive meaningful
explanations. Motivated by this, we design a new explanation
method customized for drift detection, which explains the
distance between a drifting sample and the in-class samples
rather than the decision boundary. Below, we first analyze the
“straightforward approach” and then describe our method.

Baseline Method: Boundary-based Explanation. Given
the rich literature on explaining supervised classifiers, a
straightforward approach is to convert the drifting detection
module into a supervised learning model, and then run exist-
ing explanation algorithms. Supervised explanation methods
are to explain the decision boundary between two classes
(e.g., classes A and B). The goal is to identify a minimal set of
features within xxxt , such that perturbing these features will let



xxxt cross the decision boundary. As is shown in Figure 3, class
A represents the in-distribution training samples from yt , and
class B represents the detected drifting sample in the testing
set. The decision boundary is illustrated by the blue dashed
line (the decision boundary is shown in the form of a norm ball
since it is based on distance threshold). Given a drifting sam-
ple xxxt (denoted by a star in Figure 3), the explanation method
pulls the sample into the in-distribution class (i.e. the region
with gray canvas) by perturbing a small set of important fea-
tures.2 We implemented this idea using existing perturbation-
based supervised explanation methods [13, 18, 21, 22] (imple-
mentation details in Appendix A).

The evaluation result later in Section 5 shows that this
approach is fundamentally limited. We believe the reasons are
two-fold. First, given the limited number of drifting samples,
it is difficult to derive an accurate approximation model for the
decision boundary. Second and more importantly, the outlier
space is much bigger than the in-distribution region. Given
the drifting samples are far away from the decision boundary,
it is difficult to find a small set of feature perturbations to take
the drifting sample to cross the decision boundary and enter
the in-distribution region. Without the ability to cross the
boundary, the explanation methods do not have the necessary
gradients (or feedback) to compute feature importance.

Our Method: Distance-based Explanation. Motivated
by this observation, we propose a new approach that identifies
important features by explaining the distance (i.e. the red
arrow in Figure 3). Unlike supervised classifiers that make
decisions based on the decision boundary, the drift detection
model makes decisions based on the sample’s distance to
centroids. As such, we aim to find a set of original features
that help to move the drifting sample xxxt toward the nearest
centroid cccyt . With this design, we no longer need to force xxxt
to cross the boundary, which is hard to achieve. Instead, we
perturb the original features and observe the distance changes
in the latent space.

To realize this idea, we need to first design a feature pertur-
bation mechanism. Most existing perturbation methods are
designed exclusively for images [18], the features of which
are numerical values. In our case, features in xxxt can be either
numerical or categorical, and thus directly applying existing
methods will produce ill-defined feature values. To ensure the
perturbations are meaningful for both numerical and categori-
cal features, we propose to perturb xxxt by replacing its feature
value with the value of the corresponding feature in a refer-
ence training sample xxx(c)yt . This xxx(c)yt is the training sample that
has the shortest latent distance to the centroid cccyt . As such,
our explanation goal is to identify a set of features, such that
substituting them with those in xxx(c)yt will impose the highest
influence upon the distance between f (xxxt) and cccyt . Replacing

2Note that we do not perform feature perturbation in the latent space,
because the latent features do not carry semantic meanings. Instead, we select
features in the original input space.

the feature values with those of xxx(c)yt also helps to ensure the
perturbed sample is moving towards the rough direction of the
centroid. As before, the perturbation is done in the original
feature space where features have semantic meanings.

We use an mmm ∈Rq×1 to represent the important features, in
which mmmi = 1 means (xxxt)i is replaced by the value of (xxx(c)yt )i
and mmmi = 0 means we keep the value of (xxxt)i unchanged. In
other words, mmmi = 1 indicates the ith feature is selected as
the important one. Each element in this feature mask mmmi can
be sampled from a Bernoulli distribution with probability
pi. As such, we could guarantee that mmmi equals to either 1
and 0. Then, our goal is transformed into solving the pi for
i = 1,2, ...,q. Technically, this can be achieved by minimizing
the following objective function with respect to p1:q.

Emmm∼Q(ppp)‖ẑzzt − cccyt‖2 +λ1R(mmm,bbb),

ẑzzt = f (xxxt � (1−mmm�bbb)+ xxx(c)yt � (mmm�bbb)),

R(mmm,bbb) = ‖mmm�bbb‖1 +‖mmm�bbb‖2, Q(ppp) =
q

∏
i=1

p(mmmi|pi).

(2)

Note that � denotes the element-wise multiplication; ẑzzt rep-
resents the latent vector of the perturbed sample. Given the
equation above, directly computing mmm is difficult due to its
high dimensionality. To speed up the search, we introduce a
filter bbb to pre-filter out features that are not worth considering.
We set (bbb)i = 0, if (xxxt)i and (xxx(c)yt )i are the same. In other
words, if a feature value of xxxt is already the same as that of
the reference sample xxx(c)yt , then this feature is ruled out in the
optimization (since it has no impact on distance change). In
this way, ẑzzt = f (xxxt� (1−mmm�bbb)+xxx(c)yt � (mmm�bbb)) represents
the latent vector of the perturbed sample.

In Eqn. (2), the first term in the loss function aims to mini-
mize the latent-space distance between the perturbed sample
ẑzzt and the centroid cccyt of the yt class. Each element in mmm
is sampled from a Bernoulli distribution parameterized by
pi. Here, we use Q(ppp) to represent their joint distribution.3

For the second term, λ is a hyper-parameter that controls
the strength of the elastic-net regularization R(·), which re-
stricts the number of non-zero elements in mmm. By minimizing
R(mmm,bbb), the optimization procedure selects a minimum subset
of important features.

Note that Bernoulli distribution is discrete, which means
the gradient of mmmi with respect to pi (i.e. ∂mmmi

∂pi
) is not well de-

fined. We cannot solve the optimization problem in Eqn. 2 by
using a gradient-based optimization method. To tackle this
challenge, we apply the change-of-variable trick introduced
in [45]. We enable the gradient computation by replacing
the Bernoulli distribution with its continuous approximation
(i.e. concrete distribution) parameterized by pi. Then we can
solve the parameters p1:q through a gradient-based optimiza-
tion method (we use Adam optimizer in this paper).

3We assume each feature is independently drawn from a distinct Bernoulli
distribution.



Id Family # of Samples
0 FakeInstaller 925
1 DroidKungFu 667
2 Plankton 625
3 GingerMaster 339
4 BaseBridge 330
5 Iconosys 152
6 Kmin 147
7 FakeDoc 132
Total: 3,317

Table 1: Android malware samples from the Drebin dataset.

4 Evaluation: Drifting Detection

In this section, we evaluate our system using two security ap-
plications: Android malware family attribution, and network
intrusion detection. In this current section (Section 4), we
focus on the evaluation of the drifting detection module. We
will evaluate the explanation module in Section 5. After these
controlled experiments, we tested our system with a security
company on their malware database (Section 7).

4.1 Experimental Setup and Datasets

Android Malware Attribution. We use the Drebin
dataset [7] to explore the malware family attribution problem.
The original classifier (module 0 in Figure 1) is a multilayer
perceptron (MLP) classifier. It identifies which family a mal-
ware sample belongs to. The Drebin dataset contains 5,560
Android malware samples. For this evaluation, we select 8
families 4 where each family has at least 100 malware samples
(3,317 samples in total) as shown in Table 1.

To evaluate the drifting sample detection module, for each
experiment, we pick one of the 8 families as the previously
unseen family. For example, suppose we pick FakeDoc (fam-
ily 7) as the previous unseen family. We split the other seven
families into training and testing sets, and add FakeDoc only
to the testing set. In this way, FakeDoc is not available dur-
ing training. Our goal is to correctly identify samples from
FakeDoc as drifting samples in the testing time.

We split the training-testing sets with a ratio of 80:20. The
split is based on the timestamp (malware creation time), which
is recommended by several works [52, 65] to simulate a re-
alistic setting. Time-based split also means we cannot use
any new features that only appear in the testing set for model
training. This leaves us with 7,218 features. We then use
scikit-learn’s VarianceThreshold function [51] to remove fea-
tures with very low variance (i.e., <0.003), which creates a
final set of 1,340 features.

4Two families FakeInstaller and Opfake are very similar in terms of their
nature of attacks. There is strong disagreement among AV-engines regarding
their family labels, i.e., the samples are labeled as one family by some engines
but are labeled as the other family by other engines. As such, we only included
FakeInstaller (Table 1).

Id Family # of Flows
0 Benign 66,245
1 SSH-Bruteforce 11,732
2 DoS-Hulk 43,487
3 Infiltration 9,238
Total: 130,702

Table 2: Network intrusion dataset: 3 network intrusion
classes and 1 benign class from the IDS2018 dataset.

To demonstrate the generalizability of results, we iteratively
select each of the malware families to be the “unseen family”
and repeat the experiments.

Network Intrusion Detection. We use a network intru-
sion dataset [57], which we refer to as IDS2018. The dataset
contains different types of network traces generated by known
attacks. For our evaluation, we select the benign class (one
day’s traffic) and 3 different attack classes: SSH-Bruteforce,
Dos-Hulk, and Infiltration. SSH-Bruteforce is a brute-force
attack to guess the SSH login password. DoS-Hulk attack
aims to flood the targeted machine with superfluous requests
in an attempt to make the machine temporally unavailable.
Infiltration attack first sends an email with a malicious attach-
ment to exploit an on-host application’s vulnerability, and
then leverages the backdoor to run port-scan to discover more
vulnerabilities. We refer interested readers to [57] for more
details about the attacks. To speed up the experiments and
test different setups, we use 10% of their traffic for the ex-
perimental dataset (Table 2). In Appendix D, we show that
more traffic only increases the computational overhead and
has a negligible influence on the performance of the selected
methods.

We iteratively pick one of the attack families as the pre-
viously unseen family and only include this family in the
testing set. We repeat the experiments to report the average
performance. We split the train-test sets with a ratio of 80:20.
Note that features in the IDS2018 dataset need to be further
normalized and encoded. To be realistic, we only use the
training data to build the feature encoding scheme. At the
high-level, each sample represents a network flow. Categori-
cal features such as “destination port” and “network protocol”
are encoded with one-hot encoding. The other 77 statistical
features are normalized between 0 and 1 with a MinMaxS-
caler. Each network flow has 83 features. The detailed feature
engineering steps are available in the documentation of our
released code.

Evaluation Metric. For the drifting detection module
(module ¶ in Figure 1), the positive samples are samples
in the unseen family in the testing set. The negative samples
are the rest of the testing samples from the known families.
Given a ranked list of detected samples, we simulate an an-
alyst inspecting samples from the top of the list. As we go
down the list, we calculate three evaluation metrics: preci-
sion, recall, and F1 score. Precision measures the ratio of true
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(c) Vanilla AE
Figure 4: Precision and recall vs. number of inspected samples (detected drifting samples are ranked by the respective method).

Method Drebin (Avg±Std) IDS2018 (Avg±Std)
Precision Recall F1 Norm. Effort Precision Recall F1 Norm. Effort

Vanilla AE 0.63 ± 0.17 0.88 ± 0.13 0.72 ± 0.15 1.48 ± 0.31 0.61 ± 0.16 0.99 ± 0.00 0.74 ± 0.12 1.74 ± 0.40
Transcend 0.76 ± 0.19 0.90 ± 0.14 0.80 ± 0.12 1.29 ± 0.45 0.64 ± 0.45 0.67 ± 0.47 0.65 ± 0.46 1.45 ± 0.57

CADE 0.96 ± 0.05 0.96 ± 0.04 0.96 ± 0.03 1.00 ± 0.09 0.98 ± 0.02 0.93 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

Table 3: Drifting detection results for Drebin and IDS2018 datasets. We compare CADE with two baselines Transcend [38] and
Vanilla AE. For each evaluation metric, we report the mean value and the standard deviation across all the settings.
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Figure 6: Normalized investi-
gation efforts.

unseen-family samples out of the inspected samples. Recall
measures the ratio of unseen-family samples that are suc-
cessfully discovered by the detection module out of all the
unseen-family samples. F1 score is the harmonic mean of pre-
cision and recall: F1 = 2× precision×recall

precision+recall . Finally, to quantify
the efforts of inspection, we define a metric called inspecting
effort, which is the total number of inspected samples, nor-
malized by the number of true unseen family samples in the
testing set.

Baseline Methods. We include two main baselines. The
first baseline is a standard Vanilla autoencoder [33], which
is used to illustrate the benefit of contrastive learning. We
set the Vanilla autoencoder (AE) to have the same number
of layers and output dimensionality as CADE. We use it to
perform dimension reduction to map the inputs into a latent
space where we use the same MAD method to detect and
rank drifting samples. The difference between this baseline
and CADE is that the baseline does not perform contrastive
learning. The hyperparameter setting is in Appendix B.

The second baseline is Transcend [38]. As described in
Section 2, Transcend defines a “non-conformity measure” to
quantify how well the incoming sample fits into the predicted
class, and calculate a credibility p-value to determine if the
incoming sample is a drifting sample. We obtain the source

code of Transcend from the authors and follow the paper to
adapt the implementation to support multi-class classifica-
tion (the original code only supports binary classification).
Specifically, we initialize the non-conformity measure with
−p where p is the softmax output probability indicating the
likelihood that a testing sample belongs to a given family.
Then we calculate the credibility p-value for a testing sample.
If the p-value is near zero for all existing families, we consider
it as a drifting sample. We rank drifting samples based on the
maximum credibility p-value. Note that we did not use other
OOD detection methods [14, 41, 49] as our baseline mainly
because they work in a different setup compared with CADE
and Transcend. More specifically, these methods require an
auxiliary OOD dataset in the training process and/or modi-
fying the original classifier. These requirements are difficult
to meet for malware classifiers in a production environment
(detailed discussions are in Section 9).

4.2 Evaluation Results
In the following, we first compare the drifting detection per-
formance of CADE with baselines and evaluate the impact of
contrastive learning. Then, we perform case studies to investi-
gate the potential reasons for detection errors.

Drifting Sample Detection Performance. We first use
one experiment setting to explain our evaluation process.
Take the Drebin dataset for example. Suppose we use family
Iconosys as the previously unseen family in the testing set.
After training the detection model (without any samples of
Iconosys), we use it to detect and rank the drifting samples. To
evaluate the quality of the ranked list, we simulate an analyst
inspecting samples from the top of the list.

Figure 4a shows that, as we inspect more drifting samples
(up to 150 samples), the precision maintains at a high level
(over 0.97) while the recall gradually reaches 100%. Combin-
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Figure 7: T-SNE visualization for the original space, and latent spaces of Vanilla AE and CADE (unseen family: FakeDoc).
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Figure 8: Boxplots of the distances between testing samples and their nearest centroids in both the original space and the latent
space for the Drebin dataset. Samples from previously unseen family are regarded as drifting samples.

ing precision and recall, the highest F1 score is 0.98. After
150 samples, the precision will drop since there are no more
unseen family samples in the remaining set. This confirms the
high-quality of the ranked list, meaning almost all the samples
from the unseen family are ranked at the top.

As a comparison, the ranked lists of Transcend and Vanilla
AE are not as satisfying. For Transcend (Figure 4b), the first
150 samples return low precision and recall, indicating the
top-ranked samples are not from the unseen family. After
inspecting 150 samples, we begin to see more samples from
the unseen family. After inspecting 350 samples, Transcend
has covered most of the samples from the unseen family
(i.e., with a recall near 1.0) but the precision is only 0.46.
This means more than half of the inspected samples by the
analysts are irrelevant. The best F1 score is 0.63. As shown in
Figure 4c, the performance of Vanilla AE is worse. The recall
is only slightly above 0.8, even after inspecting 600 samples.

To generalize the observation, we iteratively take each fam-
ily as the unseen family and compute the average statistics
across different settings for F1 score (in Figure 5) and normal-
ized inspecting efforts (in Figure 6). Table 3 further presents
the corresponding precision and recall. For each experiment
setting, we report the highest F1 score for each model. This
F1 score is achieved as the analysts go down the ranked list
and stop the inspection when they start to get a lot of false

positives. The “inspecting effort” refers to the total number of
inspected samples to reach the reported F1 score, normalized
by the number of true drifting samples in the testing set.

Table 3 confirms that CADE can detect drifting samples
accurately and outperforms both baselines. On Drebin, the
average F1 score of CADE is 0.96, while the F1 scores for base-
lines are 0.80 and 0.72. A similar conclusion can be drawn
for the IDS2018 dataset. In addition, the standard deviation of
CADE is much smaller than that of baselines, indicating a more
consistent performance across different experiment settings.
Finally, we show that CADE has lower normalized inspecting
efforts, which confirms the high quality of the ranking.

Note that the Transcend baseline actually performs well in
certain cases. For example, its F1 score is 99.69% (similar to
our system) when DoS-Hulk is set as the unseen family in the
IDS2018 dataset. However, the issue is Transcend’s perfor-
mance is not stable in different settings, which is reflected in
the high standard deviations in Table 3.

Impact of Contrastive Learning. To understand the
source of the performance gain, we examine the impact of
contrastive learning. First, we present a visualization in Fig-
ure 7 which shows the t-SNE plot of the training samples
of the Drebin dataset and the testing samples from the cho-
sen unseen family (FakeDoc). T-SNE [66] performs its own



non-linear dimensionality reduction to project data samples
into a 2-d plot. To visualize our data samples, we map the
samples from the original space (1,340 dimensions) to a 2-d
space (Figure 7a). We also map the samples from the latent
space (7 dimensions) to the 2-d space as a comparison (Fig-
ure 7b and Figure 7c). We can observe that samples in CADE’s
latent space have formed tighter clusters, making it easier to
distance existing samples from the unseen family.

To provide a statistical view of different experiment set-
tings, we plot Figure 8. Like before, we iteratively take one
family as the unseen family in Drebin. Then we measure the
distance of the testing samples to their nearest centroid in
the original feature space (Figure 8a) and the latent space
produced by CADE (Figure 8b). The results for the IDS2018
dataset have the same conclusion, and thus are omitted for
brevity. We show that drifting samples and non-drifting sam-
ples are more difficult to separate in the original space. Af-
ter contrastive learning, the separation is more distinctive in
the latent space. The reason is that contrastive learning has
learned a suitable distance function that can stretch the sam-
ples from different classes further apart, making it easier to
detect unseen family.

Case Study: Limits of CADE. CADE performs well in
most of the settings. However, we find that in certain cases,
CADE’s performance suffers. For example, when using Fake-
Installer as the unseen family, our detection precision is only
82% when the recall gets to 100%. We notice that many test-
ing samples from GingerMaster and Plankton families were
detected as drifting samples. After a closer inspection, we
find that, when FakeInstaller is treated as the unseen family,
in order to maintain the overall 80:20 training-testing ratio,
we need to split the dataset at the time when there were not
enough training samples from GingerMaster and Plankton
yet. Therefore, many of the testing samples from GingerMas-
ter and Plankton families look very different from the small
number of training samples in the two families (based on
the latent distance). External evidence also suggests that the
two families had many variants [5, 70]. While these malware
variants are not from a new family (false positives under our
definition), they could also have values for an investigation to
understand malware mutation within the same family.

5 Evaluation: Explaining Drifting Samples

To evaluate the explanation module, we randomly select one
family from each dataset (i.e. FakeDoc for Drebin and Infil-
tration for IDS2018) as drifting samples. Results from other
settings have the same conclusion and thus are omitted for
brevity. Given this setting, we generate explanations for the
detected drifting samples and evaluate the explanation results,
both quantitatively and qualitatively.

Method Drebin-FakeDoc IDS2018-Infiltration
Avg ± Std Avg ± Std

Original distance 5.363 ± 0.568 11.715 ± 2.321
Random 5.422 ± 1.773 11.546 ± 3.169

Boundary-based 3.960 ± 2.963 6.184 ± 3.359
COIN [43] 6.219 ± 3.962 8.921 ± 2.234

CADE 0.065 ± 0.035 2.349 ± 3.238

Table 4: Comparison of explanation fidelity based on the av-
erage distance between the perturbed sample and the nearest
centroid. A shorter distance is better. “Original distance” is
the distance between the drift sample and nearest centroid.

5.1 Experimental Setup

Baseline Method. We consider three baseline methods:
(1) a random baseline that randomly selects features as im-
portant features; (2) the boundary-based explanation method
described in Section 3, and (3) an unsupervised explanation
method called COIN [43]. Due to space limit, we only briefly
describe how COIN works. COIN builds a set of local Lin-
earSVM classifiers to separate an individual outlier from its
in-distribution neighborhood samples. Since the LinearSVM
classifiers are self-explainable, they can pinpoint important
features that contribute to the outlier classification. For a
fair comparison, we select the same number of top features
for baselines as our method. The implementation and hyper-
parameters of these baselines can be found in Appendix B.
Note that we did not select existing black-box explanation
methods (e.g., LIME [53] and SHAP [44]) as our comparison
baselines. This is because white-box methods usually perform
better than black-box methods thanks to their access to the
original model [67].

Evaluation Metrics. Quantitatively, we directly evaluate
the impact of selected features on the distance changes. Given
a testing sample xxxt and an explanation method, we obtain
the selected features mmmt , where (mmmt)i = 1, if the ith feature is
selected as important, We quantify the fidelity of this expla-
nation result by this metric: d′xxxt = ‖ f (xxxt � (1−mmmt)+ xxx(c)yt �
mmmt)− cccyt‖2 where f , cccyt , and xxx(c)yt have the same definition
as the ones in Eqn. (2). d′xxxt represents the latent distance be-
tween a perturbed sample of xxxt and its closet centroid cccyt .
The perturbed sample is generated by replacing the values of
the important features in xxxt with those of the training sample
closest to the centroid (i.e. xxx(c)yt ). If the selected features are
truly important, then substituting them with the corresponding
features in the training sample from class yt will reduce the
distance between the perturbed sample and the centroid of cccyt .
In this case, a lower distance d′xxxt is better.

In addition to this d′xxxt metric, we also use a traditional
metric (Section 5.2) to examine the ratio of perturbed samples
that can cross the decision boundary.



Drebin Case-A: Drifting Sample Family: FakeDoc; Closest Family: GingerMaster
[api_call::android/telephony/SmsManager;->sendTextMessage] , [call::readSMS] , [permission::android.permission.DISABLE_KEYGUARD] ,

[permission::android.permission.RECEIVE_SMS] , [permission::android.permission.SEND_SMS] , [permission::android.permission.WRITE_SMS] ,

[real_permission::android.permission.SEND_SMS] , [permission::android.permission.READ_SMS] , [feature::android.hardware.telephony] ,

[permission::android.permission.READ_CONTACTS] , [real_permission::android.permission.READ_CONTACTS] ,
[api_call::android/location/LocationManager;->isProviderEnabled], [api_call::android/accounts/AccountManager;->getAccounts],
[intent::android.intent.category.HOME], [feature::android.hardware.location.network], [real_permission::android.permission.RESTART_PACKAGES] ,

[real_permission::android.permission.WRITE_SETTINGS] , [api_call::android/net/ConnectivityManager;->getAllNetworkInfo],
[api_call::android/net/wifi/WifiManager;->setWifiEnabled], [api_call::org/apache/http/impl/client/DefaultHttpClient],
[url::https://ws.tapjoyads.com/] , [url::https://ws.tapjoyads.com/set_publisher_user_id?] ,

[permission::android.permission.CHANGE_WIFI_STATE], [real_permission::android.permission.ACCESS_WIFI_STATE],
[real_permission::android.permission.BLUETOOTH], [real_permission::android.permission.BLUETOOTH_ADMIN], [call::setWifiEnabled].

Table 5: Case study of explaining why a given sample a drifting sample. The highlighted features represent those that match the
semantic characteristics that differentiate the drifting sample with the closest family.

Method Drebin-FakeDoc IDS2018-Infiltration
Random 0% 0%

Boundary-based 0% 0.41%
COIN [43] 0% 0%

CADE 97.64% 1.41%

Table 6: Comparison of explanation fidelity based on the
ratio of perturbed samples that cross the decision boundary. A
higher ratio means the perturbed features are more important.

5.2 Fidelity Evaluation Results

Feature Impact on Distance. Table 4 shows the mean
and standard deviation for d′xxxt of all the drifting samples (i.e.,
the distance between the perturbed samples to the nearest
centroid). We have four key observations. First, perturbing
the drifting samples based on the randomly selected features
almost does not influence the latent space distance (compar-
ing Row 2 and 3). Second, the boundary-based explanation
method could lower the distance by 26%–47% across two
datasets (comparing Row 2 and 4). This suggests this strat-
egy has some effectiveness. However, the absolute distance
values are still high. Third, COIN reduces the latent space
distance on the IDS2018 dataset (comparing Row 2 and 5),
but it somehow increases the average distance in the Drebin
dataset. Essentially, COIN is a specialized boundary-based
method that uses a set of LinearSVM classifiers to approx-
imate the decision boundary. We find COIN does not work
well on the high-dimensional space, and it is difficult to drag
the drifting sample to cross the boundary (will be discussed in
Section 5.3). Finally, our explanation module in CADE has the
lowest mean and standard deviation for the distance metric.
The distance has been reduced significantly from the origi-
nal distance (i.e. 98.8% on Drebin and 79.9% on IDS2018,
comparing Row 2 and 6). In particular, CADE significantly out-
performs the boundary-based explanation method. Since our
method overcomes the sample sparsity and imbalance issues,
it pinpoints more effective features that have a larger impact
on the distance (which affects the drift detection decision).

Number of Selected Features. Overall, the number of
selected features is small, which makes it possible for manual
interpretation. As mentioned, we configure all the methods to
select the same number of important features (as CADE). For
the Drebin dataset, on average the number of selected features
is 44.7 with a standard deviation of 6.2. This is considered a
very small portion (3%) out of 1000+ features. Similarly, the
average number of selected features for the IDS2018 dataset
is 16.2, which is about 20% of all the features.

5.3 Crossing the Decision Boundary

The above evaluation confirms the impact of the selected
features on the distance metric, which is what CADE is de-
signed to optimize. To provide another perspective, we further
examine the impact of the selected features on crossing the
boundary. More specifically, we calculate the ratio of per-
turbed samples that successfully cross the decision boundary.
As shown in Table 6, we confirm that crossing the boundary
in the drifting detection context is difficult for most of the
settings. In particular, CADE can push 97.64% of the perturbed
samples to cross the detection boundary for the Drebin dataset,
but only have 1.41% of the samples cross the boundary for the
IDS2018 dataset. In comparison, the baseline methods can
rarely successfully perturb the drifting samples in the original
feature space to make them cross the boundary. By loosing up
this condition and focusing on distance changes, our method
is more effective in identifying important features.

5.4 Case Studies

To demonstrate our method indeed captures meaningful fea-
tures, we present some case studies. In Table 5, we present a
case study for the Drebin dataset. We take the setting when
FakeDoc is the unseen family and randomly pick a drifting
sample to run the explanation module. Out of 1000+ features,
our explanation module pinpointed 42 important features,
among which 27 features have a value of “1” (meaning this



sample contains these features). As shown in Table 5, the
closest family is GingerMaster.

We manually examine these features to determine if the
features carry the correct semantic meanings. While it is dif-
ficult to obtain the “ground-truth” explanations, we gather
external analysis reports about FakeDoc malware and Ginger-
Master [68,70]. Based on these reports, a key difference from
GingerMaster is that FakeDoc malware usually subscribes
to premium services via SMS and bill the victim users. As
shown in Table 5, many of the selected features are related to
permissions and APIs calls for reading, writing, and sending
SMS. We highlight these features that match SMS related
functionality. Other related features are highlighted too. For
example, the permission of “RESTART_PACKAGES” allows
the malware to end the background processes (e,g., that dis-
plays incoming SMS) to avoid alerting the users. The per-
mission of “DISABLE_KEYGUARD” allows the malware to
send premium SMS messages without unlocking the screen.
“WRITE_SETTINGS” is also helpful to write system settings
for sending SMS stealthily. “url::https://ws.tapjoyads.com/”
is an advertisement library usually used by FakeDoc. Again,
this small set of features is selected from over 1000 features.
We conclude that these features are highly indicative of how
this sample is different from the nearest known family.

6 Evaluation: In-class Evolution

So far, our evaluation has been focused on one type of con-
cept drift (Type A) where the drifting samples come from
a previously unseen family. Next, we explore to adapt our
solution to address a different type of concept drift (Type B)
where the drifting samples come from existing classes. We
conduct a brief experiment in a binary classification setting,
following a similar setup with that of [38].

More specifically, we first use the Drebin dataset to train
a binary SVM classifier to classify malware samples from
benign samples. The classifier is highly accurate on Drebin
with a training F1 score of 0.99. We want to test how well
this classifier works on a different Android malware dataset
Marvin [42]. Marvin is a slightly newer dataset (from 2010
to 2014) compared with Drebin (from 2010 to 2012). We first
remove Marvin’s samples that are overlapped with those in
Drebin, to make sure the Marvin samples are truly previously
unseen. This left us 9,592 benign samples and 9,179 malware
samples in Marvin.

For this experiment, we randomly split the Marvin dataset
into a validation set and a testing set (50:50). For both sets,
we keep a balanced ratio of malware and benign samples.
We apply the original classifier (trained on Drebin data) on
this Marvin testing set. We find that the testing accuracy is no
longer high (F1 score 0.70) due to potential in-class evaluation
in the malware class and/or the benign class.

To address the in-class evolution, we apply CADE and Tran-
scend on the Marvin validation set to identify a small number

# Selected Samples F1 of Retrained Classifier
CADE Transcend

0 0.70 0.70
100 0.91 0.71
150 0.92 0.76
200 0.93 0.74
250 0.94 0.71

Table 7: Performance of the retrained classifier on the Marvin
testing set. We used CADE and Transcend to select the drifting
samples to be labeled for retraining.

of drifting samples (they could be either benign or malicious).
We simulate to label them by using their “ground-truth” labels
and then add these labeled drifting samples back to the Drebin
training data to retrain the binary classifier. Finally, we test
the retrained classifier on the Marvin testing set.

As shown in Table 7, we find that CADE still significantly
outperforms Transcend. For example, by adding only 150
drifting samples (1.7% of Marvin validation set) for retraining,
CADE boosts the binary classifier’s F1 score back to 0.92. For
Transcend, the same number of samples only gets the F1 score
back to 0.74. In addition, we find that CADE is also faster: the
running time for CADE is 1.2 hours (compared to the 10 hours
of Transcend). This experiment confirms CADE can be adapted
to handle in-class evolution for a binary malware classifier.

7 Real-world Test on PE Malware

We have worked with the security company Blue Hexagon
Inc. to test CADE on their proprietary sample set. More specif-
ically, we run an initial test on Blue Hexagon’s Windows
malware database. In this test, we got access to a set of sam-
ples collected from August 29, 2019, to February 10, 2020.
This set includes 20,613 unique Windows PE malware sam-
ples from 395 families. We use this dataset to test CADE in
a more diverse setup (i.e., the drifting samples come from a
larger number of families).

PE Malware Dataset. For each sample, we have the raw
binary file and the metadata provided by Blue Hexagon, in-
cluding the timestamp when the samples were first observed,
and the family name (labeled by security analysts). We fol-
low the feature engineering method of Ember [6], and use
LIEF [63] to parse the binary files and extract the feature
vectors. Each feature vector has 2,381 dimensions. These fea-
tures include the frequency histogram of bytes and the entropy
of different bytes, printable strings and special patterns, fea-
tures about file size, header information, section information,
imported libraries and functions, exported functions, and the
size and virtual addresses of data directories.

Family Attribution Experiments. The original classifier
is a multi-class classifier to attribute malware families. Our
goal is to use CADE to detect unseen families that should not
be attributed to existing families. We split the dataset based on



N Precision Recall F1 Norm. Detected
Effort Families

5 0.96 0.98 0.97 1.02 161/165
10 0.96 0.94 0.95 0.98 153/160
15 0.95 0.80 0.87 0.84 140/155

Table 8: Drifting detection results for the PE malware dataset.
N is the number of known families in the training set. “De-
tected Families” indicates the number of new families CADE
detected out of all the new families.

time. The training set contains the malware samples collected
from August 29 in 2019, to January 10 in 2020. The testing
set contains samples collected in the following month, from
January 10 to February 10, 2020. For training, we need to
make sure the malware families have enough samples to train
the original classifier. So we focus on the top N families. We
test three settings with N = 5, 10, and 15, respectively. This
makes sure the training families contain at least 298 samples
per family in all the settings. Samples that are not in the top
N families are excluded from the training set. Such a mini-
mal number of samples is necessary for the original classifier
to have reasonable accuracy. For example, the accuracy for
N = 15 is 96.5%. The classifier can potentially support more
families if the dataset is larger. For the testing set, all the fam-
ilies are kept. In addition, based on the suggestion from Blue
Hexagon’s analytics team, we add two families (Tinba and
Smokeloader) to the testing set because they have observed
that these families have more success in evading existing ML-
based malware detection engines. As shown in Table 8, the
testing set has 155 to 165 previously unseen families, i.e., the
target of CADE.

Results and Case Studies. Table 8 shows that CADE still
performs well under this diverse set of samples with more
than 155 previously unseen families. CADE achieves an F1
score of 95% when the number of training families N = 10.
The F1 score is still 0.87 when N = 15. Most of the previously
unseen families are successfully identified. Indeed, a larger
number of families has made the problem more challenging.
The reason is not necessarily because existing families and
unseen families are difficult to separate. Instead, with more
training families, we observe more testing samples within
the existing families that drift even further away compared to
those in the unseen families. These in-family variants become
the main contributor to false positives under our definition.
The observation is similar to our case study in Section 4.2. As
a quick comparison, we also run Transcend on this N = 15
setting. We find CADE still outperforms Transcend on the more
diverse unseen families (Transcend’s F1 score is only 0.76).

We did a quick feature analysis using the explanation mod-
ule on Tinba and Smokeloader which are proven to be chal-
lenging examples for the underlying classifier. Tinba (tiny
banker trojan) targets financial websites with man-in-the-
browser attacks and network sniffing. Smokeloader is a trojan
that downloads other malware. It is an old malware family

but evolves rapidly. In particular, we find the new samples in
Tinba are closest to an existing family Wabot. CADE pinpoints
45 features to offer explanations. For example, we find Tinba
enables the “LARGE_ADDRESS_AWARE” option, which
tells the linker that the program can handle addresses larger
than 2 gigabytes. This option is enabled by default on 64-bit
compilers. This provides some explanation on why Tinba has
the success in evading existing malware detection engines,
given that the vast majority of PE malware files are 32-bit
based. Based on features about “sections,” we notice that the
Tinba sample uses “UPX” as the packer. Based on selected
features of imported libraries and functions, we find Tinba
imports “crypt32.dll” for encrypting strings. Tinba samples
are different from Wabot samples on these features.

8 Discussion

Computational Complexity. CADE’s computational over-
head is smaller than existing methods. The complexity of
the detection module contains two parts: contrastive learning
and drifting detection. The complexity of contrastive learn-
ing is O(IB2|θ|), where I, B, and |θ| represent the number of
training iterations, batch size, and model parameters of the au-
toencoder. The complexity of drifting detection (Algorithm 1)
is O(Nñi+NK), where N, ñi, and K are the number of classes,
the maximum number of training samples in each class, and
the number of testing samples, respectively. The overall com-
plexity of CADE detection module is O(IB2|θ|+Nñi +NK).
Our training overhead is acceptable since it is only quadratic
to the batch size B. Our detection runtime overhead is sig-
nificantly lower than that of Transcend (which is O(NñiK)).
Empirically, we have recorded the average runtime for the
detection experiments (Section 4), and confirms that CADE is
faster than Transcend. For example, on the larger IDS2018
dataset, the average run time for CADE and Transcend are
1,422.7s and 4,289.3s. Regarding the explanation module,
CADE is comparable with boundary-based explanation meth-
ods and COIN. For example, for the IDS2018 dataset, the
average runtime of CADE, COIN, and boundary-based explana-
tion for explaining one drifting sample are 3.2s, 8.2s, and 3.7s
respectively. The boundary-based explanation also requires
an additional 76.5s on average to build the approximation
model for the explanation.

Explanation vs. Adversarial Attacks. We notice that the
explanation module in CADE shares some similarities with
the adversarial example generation process, e.g., both involve
perturbing the given input for a specific objective. However,
we think they are different for two reasons. First, they have
different outputs. Adversarial attack (with the goal of evasion)
directly outputs the perturbation needed to cross the decision
boundary; Our explanation method (with the goal of under-
standing the drift) outputs the important features that affect
the distance. Second, they have different constraints on the



perturbations. Our explanation method only tries to minimize
the number of perturbed features, while the adversarial attack
constrains the magnitude of the perturbation too. More impor-
tantly, adversarial samples need to be valid for the respective
applications (i.e., valid malware samples that can be executed
and maintain the malicious behavior, valid network flows that
can carry out the original attack). To these ends, generating
adversarial samples can be more difficult than deriving ex-
planations in our context. That said, the adversarial attack is
out of the scope of this paper. We leave adversarial attacks
against CADE to future work (i.e., creating non-perceptible
perturbation to convert a drifting sample to an in-distribution
sample).

Limitations and Future Work. Our work has a few limi-
tations. First, CADE ranks all the drifting samples in a single
list. However, in practice, the drifting samples may contain
substructures (e.g., multiple new malware families). A practi-
cal strategy could be further grouping drifting samples into
clusters. In this way, security analysts only need to inspect
and interpret a few representative samples per cluster to fur-
ther save time. Second, certain hyper-parameters of CADE are
determined empirically (e.g., the MAD threshold). We have
included an Appendix C to test the sensitivity of CADE to
hyper-parameters. Future work can look into more systematic
strategies to configure the hyper-parameters. Third, CADE is
designed based on the assumption that the training set does
not have mislabeled samples (or poisoning samples). We de-
fer to future work to robustify our system against low-quality
or malicious labels. Fourth, our experiments are primarily fo-
cused on detecting new families. In Section 6, we only briefly
experimented with concept drift within existing families (in-
class evolution). We defer a more in-depth analysis to future
work.

Finally, our evaluation in Section 7 is limited to N = 15
training classes (and 155 previously unseen testing classes).
We limited to N = 15 to make sure each training class has
enough samples to train an accurate original classifier. To
test a larger N, we tried to apply CADE to several other mal-
ware datasets but did not find a suitable one that could meet
our need. For example, the Ember-2018 dataset [6] provides
malware samples from a large number of families. However,
the family labels are not well curated. For instance, a pop-
ular malware family name in Ember-2018 is called “high”
(8,417 samples) which turns out to be incorrectly parsed from
VirusTotal reports: the original entry name in the reports is
“Malicious (High Confidence),” which is not a real malware
family name. We have observed other similar parsing errors
and inconsistencies in the labels. The Ember-2017 dataset [6]
and the UCSB packed malware dataset [3] do not provide mal-
ware family information. The dataset from Microsoft Malware
Classification Challenge [55] only has 9 malware families,
which is smaller than our Blue Hexagon dataset. Given our
unsuccessful efforts, we defer the examination of a larger
number of training classes to future work.

9 Related work

Machine Learning used in Security. Machine learning
has been used to solve many security problems such as mal-
ware detection [6,7,17,42], malware family attribution [4,11],
and network intrusion detection [24, 34, 48, 60]. More re-
cently, researchers look into using deep learning methods to
perform binary analysis [27, 69], software vulnerability iden-
tification [72], and severity prediction [30]. Most of these
machine learning models need to address the concept drift
problem when deployed in practice.

Out of Distribution (OOD) Detection. Recently, the
machine learning community has made progress in out-of-
distribution detection [14, 32, 41, 46, 49]. These works are
relevant, but have different assumptions and goals compared
to ours. At the high-level, most of these methods try to cal-
ibrate the “probability” produced by the original classifier
to detect OOD samples. The researchers indeed recognized
that the probability could be untrustworthy when it comes to
previously unseen distributions [14, 32]. To avoid assigning
a high probability to an OOD sample, the proposed methods
usually need to introduce an auxiliary OOD dataset to the
training data. These methods are difficult to realize in security
applications for two reasons. First, auxiliary OOD dataset (i.e.,
previously unseen attacks) is extremely difficult to obtain in
the first place. Second, these solutions require re-designing
the original classifier (e.g., a functional malware detector),
which is inconvenient to do in the production environment.
Instead, our method does not rely on auxiliary OOD dataset
and is decoupled from the original classifier.

Classification Trustworthiness. A related line of work
aims to assess the trustworthiness of the classification re-
sults [11, 37, 50]. A common goal is to identify untrusted
predictions, e.g., predictions on adversarial attacks. Most of
these methods are based on the idea of “nearest neighbors”.
The intuition is, an untrusted prediction is more likely to
have a different label from its nearest neighbors. For example,
DkNN [50] derives a trust score by comparing a testing sam-
ple with its neighboring training samples at each layer of a
Deep Neural Network (DNN). Another recent work [37] com-
pute the trust score based on the neighboring “high-density-
sets”. However, such neighbor-based methods still rely on
a good distance function. As acknowledged in [37], their
method may suffer in a high dimensional space. Overall,
these methods are focused on different problems from ours.
Their goal is to identify misclassifications within existing
classes (not drifting samples from new classes). Another sys-
tem EC2 [11] uses a threshold of prediction probability to
filter out untrustworthy predictions. Related to this direction,
active learning methods also use prediction probability to
select low-confidence samples to be labeled for model retrain-
ing [47, 73]. As discussed before (see [32]), the prediction
probability itself can be misleading under concept drift.



Machine Learning Explanation. A collection of recent
works focus on post-hoc interpretation methods for machine
learning classifiers [8, 22, 35, 58, 59] and study the robustness
of explanations [15,71]. Given a testing sample, the goal is to
pinpoint important features to explain the classification deci-
sions. Most methods are designed for deep neural networks.
For example, perturbation-based methods would subtly manip-
ulate the input and observe the variation of output to identify
important features [13, 18, 21, 22]. Gradient-based methods
(e.g., saliency maps) back-propagate gradients through the
deep neural network to measure the sensitivity of each fea-
ture [56,58,59,61]. Other explanation methods treat the target
classifier as a blackbox [53, 54]. Systems such as LIME [53],
LEMNA [28], and SHAP [44] try to use a simpler model (e.g.,
linear regression) to approximate the decision boundary near
the input sample, and then use the simpler model to pinpoint
features to generate the explanations.

Our method falls into the category of perturbation-based
method. A key difference is existing methods are designed for
supervised classifiers and try to explain the decision bound-
aries. Our method is focusing on explaining distance changes,
which are more suitable for outlier detection. Only a few
works aim to explain unsupervised models [19, 43]. We used
COIN [43] as a baseline in our evaluation, and showed the
advantage of distance-based explanation.

10 Conclusion

In this paper, we build a novel system CADE to complement
supervised classifiers to combat concept drift in security con-
texts. Using a contrastive autoencoder and a distance-based
explanation method, CADE is designed to detect drifting sam-
ples that deviate from the original training distribution and
provide the corresponding explanations to reason the meaning
of the drift. Using various datasets, we show that CADE out-
performs existing methods. Working with an industry partner,
we demonstrate CADE’s ability to detect and explain drifting
samples from previously unseen families.
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[23] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. A survey on concept drift adaptation. ACM
computing surveys (CSUR), 2014.

[24] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández,
and Enrique Vázquez. Anomaly-based network intrusion detection:
Techniques, systems and challenges. Computers & Security, 2009.

[25] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. Proc. of ICLR, 2015.

[26] Antonio Gulli and Sujit Pal. Deep learning with Keras. 2017.

[27] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song.
Deepvsa: Facilitating value-set analysis with deep learning for post-
mortem program analysis. In Proc. of USENIX Security, 2019.

[28] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu
Xing. Lemna: Explaining deep learning based security applications. In
Proc. of CCS, 2018.

[29] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In Proc. of CVPR, 2006.

[30] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiy-
ong Feng. Learning to predict severity of software vulnerability using
only vulnerability description. In Proc. of ICSME, 2017.

[31] Maayan Harel, Shie Mannor, Ran El-Yaniv, and Koby Crammer. Con-
cept drift detection through resampling. In Proc. of ICML, 2014.

[32] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. In Proc. of
ICLR, 2017.

[33] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 2006.

[34] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis,
and Robert Atkinson. Shallow and deep networks intrusion detection
system: A taxonomy and survey. arXiv preprint arXiv:1701.02145,
2017.

[35] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim.
A benchmark for interpretability methods in deep neural networks. In
Proc. of NeurIPS, 2019.

[36] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal,
Gang Wang, and Bimal Viswanath. Throwing darts in the dark? detect-
ing bots with limited data using neural data augmentation. In Proc. of
S&P, 2020.

[37] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or
not to trust a classifier. In Proc. of NeurIPS, 2018.

[38] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide
Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting
concept drift in malware classification models. In Proc. of USENIX
Security, 2017.

[39] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam,
Brad Miller, Michael Carl Tschantz, Rachel Greenstadt, Anthony D.
Joseph, and J. D. Tygar. Approaches to adversarial drift. In Proc. of
AISec, 2013.

[40] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and
Laurent Licata. Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the median. Journal of
Experimental Social Psychology, 2013.

[41] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the
reliability of out-of-distribution image detection in neural networks.
Proc. of ICLR, 2018.

[42] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer.
Marvin: Efficient and comprehensive mobile app classification through
static and dynamic analysis. In Prof. of COMPSAC, 2015.

[43] Ninghao Liu, Donghwa Shin, and Xia Hu. Contextual outlier interpre-
tation. In Proc. of IJCAI, 2018.

[44] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Proc. of NeurIPS, 2017.

[45] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete
distribution: A continuous relaxation of discrete random variables. In
Proc. of ICLR, 2017.

[46] Marc Masana, Idoia Ruiz, Joan Serrat, Joost van de Weijer, and Anto-
nio M Lopez. Metric learning for novelty and anomaly detection. In
Proc. of BMVC, 2018.

[47] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin
Dauber, Ling Huang, Michael Carl Tschantz, Anthony D. Joseph, and
J.D. Tygar. Adversarial active learning. In Proc. of AISec, 2014.

[48] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. In Proc. of NDSS, 2018.

[49] Aristotelis-Angelos Papadopoulos, Mohammad Reza Rajati, Nazim
Shaikh, and Jiamian Wang. Outlier exposure with confidence control
for out-of-distribution detection. arXiv preprint arXiv:1906.03509,
2019.

[50] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: To-
wards confident, interpretable and robust deep learning. arXiv preprint
arXiv:1803.04765, 2018.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 2011.

[52] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. TESSERACT: Eliminating experimental bias
in malware classification across space and time. In Proc. of USENIX
Security, 2019.

[53] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should
i trust you?" explaining the predictions of any classifier. In Proc. of
KDD, 2016.

[54] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors:
High-precision model-agnostic explanations. In Proc. of AAAI, 2018.

[55] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Man-
sour Ahmadi. Microsoft malware classification challenge. arXiv
preprint arXiv:1802.10135, 2018.

[56] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proc. of ICCV, 2017.

[57] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. In Prof. of ICISSP, 2018.

[58] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning
important features through propagating activation differences. In Proc.
of ICML, 2017.

[59] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. Workshop at ICLR, 2014.

[60] Robin Sommer and Vern Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In Proc. of S&P,
2010.

[61] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. Striving for simplicity: The all convolutional net. In
Proc. of ICLR, 2015.

[62] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In Proc. of ICML, 2017.

[63] Romain Thomas. Lief - library to instrument executable formats.
https://lief.quarkslab.com/, April 2017.

https://lief.quarkslab.com/


[64] Robert Tibshirani and Guenther Walther. Cluster validation by pre-
diction strength. Journal of Computational and Graphical Statistics,
2005.

[65] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of
machine learning techniques for malware analysis. Computers &
Security, 2019.

[66] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 2008.

[67] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad
Rieck. Don’t paint it black: White-box explanations for deep learning
in computer security. In Proc. of Euro S&P, 2020.

[68] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.
Deep ground truth analysis of current android malware. In Proc. of
DIMVA, 2017.

[69] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proc. of CCS, 2017.

[70] Rowland Yu. Ginmaster: a case study in android malware. In Virus
bulletin conference, 2013.

[71] Xinyang Zhang, Ningfei Wang, Shouling Ji, Hua Shen, and Ting Wang.
Interpretable deep learning under fire. In Proc. of USENIX Security,
2020.

[72] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective vulnerability identification by learning comprehen-
sive program semantics via graph neural networks. In Proc. of NeurIPS,
2019.

[73] Jingbo Zhu, Huizhen Wang, Eduard Hovy, and Matthew Ma.
Confidence-based stopping criteria for active learning for data annota-
tion. ACM Trans. Speech Lang. Process., 2010.

[74] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on
unsupervised outlier detection in high-dimensional numerical data.
Statistical Analysis and Data Mining, 2012.

Appendix A: Boundary-based Explanation

To perform the boundary-based explanation, we first need to
approximate the detection boundary of the drift detection mod-
ule with a parametric function. We need to run approximation
because the true boundary of the drift detector is threshold-
based, which is not parametric. Specifically, we used an MLP
classifier to perform the approximation in the latent space.
Due to the limited number of drifting samples, to approximate
the decision boundary, we first synthesized more drifting sam-
ples by adding Gaussian noise to the latent representations of
the detected drifting samples. Then, we trained an MLP g(zzz)
to classify the latent representations of the in-distribution sam-
ples from the drifting samples. After obtaining the approxima-
tion model, we combined it with the contrastive autoencoder
f to construct a supervised approximation of the detection
module (i.e. g( f (xxx))). We conducted the approximation in
the latent space rather than the input space for two reasons.
First, training an MLP in a low dimensional space is more
efficient than in a high dimensional space. Second, directly
utilizing the original contrastive autoencoder enables a higher
fidelity of the supervised approximation than approximating
the autoencoder with another network. Using the supervised
approximation, we then applied the perturbation-based expla-
nation method [22] to explain each drifting sample. Similar to

CADE, this method also outputs a mask indicating the feature
importance. We ranked the mmmi and pinpointed the features
with high mmmi as the important ones.

Appendix B: CADE Implementation Details

CADE. We implemented CADE based on the Keras [26]
package with Tensorflow [1] as the backend. The hyper-
parameters of CADE and the baselines are configured as the
following. As for CADE, we set the encoder as an MLP with
the architecture of 1340-512-128-32-7 for the Drebin dataset
(the first dimension could vary when using different families
as the unseen family) and 83-64-32-16-3 for the IDS2018
dataset. The activation function for each hidden layer is the
ReLU function. We applied the Adam optimizer with the
learning rate of 0.0001 and epochs of 250 to train both net-
works. The batch size for Drebin and IDS2018 are 32 and
256, respectively. As for the hyper-parameters introduced by
the contrastive loss in Eqn. (1), we set λ = 0.1 and m = 10.
We applied the widely used empirical value for the MAD
threshold and coefficient: TMAD = 3.5 and b = 1.4826. For
the hyper-parameters introduced by the explanation loss in
Eqn. (2), we set λ1 = 1e− 3 and used the Adam optimizer
with the learning rate of 0.01 to solve the optimization func-
tion. The training epoch is set as 250.

Drift Detection Baselines. The vanilla autoencoder base-
line was implemented as a variant of our system without using
contrastive learning. We also implemented a multi-class ver-
sion of Transcend based on the source code provided by the
authors. The hyper-parameters of the vanilla AE baseline
are almost the same with CADE except for the MAD thresh-
old TMAD = 0. We tried TMAD = 3.5 for this method, which
resulted in zero precision and recall. The reason is that the dis-
tance in vanilla AE’s latent space is not optimized to compare
different samples and thus MAD lost its effectiveness.

For Transcend, we used an MLP with the architecture of
1340-100-30-7 for the Drebin dataset and 83-30-3 for the
IDS2018 dataset to train a multi-class classifier. Then we
used the negative output probability−p as the non-conformity
measure of Transcend. We set the threshold of the credibility
p-value as 1.0. That is, a testing sample is marked as a drifting
sample if its p-value is lower than 1.0.

Explanation Baselines. We implemented the boundary-
based explanation method and the random selection as de-
scribed in the main text. For COIN, we used the source code
released by the authors as the implementation.5 The net-
work architectures of the approximation function g in the
boundary-based explanation are 7-15-2 and 3-15-2 for Drebin
and IDS2018, respectively. The optimizer, batch size, and
number of epochs are the same as those used in our sys-

5https://github.com/ninghaohello/
Contextual-Outlier-Interpreter

https://github.com/ninghaohello/Contextual-Outlier-Interpreter
https://github.com/ninghaohello/Contextual-Outlier-Interpreter


Parameter Drebin (Avg±Std) IDS2018 (Avg±Std)
F1 Norm. Effort F1 Norm. Effort

m = 5 0.95 ± 0.05 0.97 ± 0.05 0.72 ± 0.39 0.72 ± 0.39
m = 10 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07
m = 15 0.91 ± 0.06 1.00 ± 0.14 0.77 ± 0.33 0.76 ± 0.34
m = 20 0.93 ± 0.03 1.06 ± 0.13 0.98 ± 0.02 1.02 ± 0.02

λ = 1 0.95 ± 0.03 1.05 ± 0.11 0.94 ± 0.09 1.00 ± 0.00
λ = 0.1 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

λ = 0.01 0.94 ± 0.03 1.05 ± 0.09 0.67 ± 0.47 0.71 ± 0.42
λ = 0.001 0.89 ± 0.10 1.19 ± 0.33 0.95 ± 0.05 0.93 ± 0.08

TMAD = 2.0 0.96 ± 0.03 1.00 ± 0.09 0.94 ± 0.09 0.99 ± 0.02
TMAD = 2.5 0.96 ± 0.03 1.00 ± 0.09 0.95 ± 0.07 0.97 ± 0.04
TMAD = 3.0 0.96 ± 0.03 1.00 ± 0.09 0.95 ± 0.07 0.96 ± 0.05
TMAD = 3.5 0.96 ± 0.03 1.00 ± 0.09 0.96 ± 0.06 0.95 ± 0.07

Table 9: Sensitivity test of three hyper-parameters on detecting
drifting samples. For each evaluation metric, we report the
mean value and the standard deviation across all the settings.

λ1 Drebin-FakeDoc IDS2018-Infiltration
distance (Avg ± Std) Ratio distance (Avg ± Std) Ratio

0.1 0.119 ± 0.058 91.34% 2.669 ± 3.343 1.99%
0.01 0.085 ± 0.039 96.85% 2.403 ± 3.266 1.36%

0.001 0.065 ± 0.035 97.64% 2.349 ± 3.238 1.41%
0.0001 0.064 ± 0.027 99.21% 2.322 ± 3.240 1.69%

Table 10: Sensitivity test on the hyper-parameter λ1 of ex-
plaining a drifting sample. “Ratio” means the percentage of
perturbed samples that cross the decision boundary.

tem. The hyper-parameters of solving the explanation masks
(i.e. optimizer and epoch) are also the same as our system.
Finally, we used the default choices of the hyper-parameters
from the authors’ code of COIN.

The original implementation of COIN provided by the au-
thors can be very slow when the dataset has a large number
of samples and outliers. For each detected outlier, COIN runs
KMeans clustering on its 10% of nearest neighbors to get its
contexts. To determine the best number of clusters (K), COIN
iterates K from 1 to a pre-defined threshold and adopts the
measure of prediction strength [64] to assess the choice of
K. Prediction strength can be computationally expensive as
it requires pair-wise comparison on the labels predicted by
KMeans. To make it feasible, on the large IDS2018 dataset,
we only choose 1% of nearest neighbors and fix the number of
clusters as a value between 1 and 4 for each outlier. Also, the
LinearSVM classifier does not converge on about 6% of out-
liers even we set max iterations as 200,000. We report the best
average result on the converged cases obtained from COIN.
For the Drebin dataset, we keep all the hyper-parameters the
same as the original code.

Appendix C: Hyper-parameter Sensitivity

In Section 3.2, the loss function of contrastive autoencoder
has two hyper-parameters: λ and m. Here, we evaluate the
sensitivity of CADE’s performance to these hyper-parameters.
Our experiment methodology is to fix one parameter and
swap the other one. We fix λ as 0.1 and set m as 5, 10, 15,

Sampling Rate 10% 15% 20% 25% 30%
F1 score 0.96 0.98 0.98 0.98 0.97

Table 11: Sampling rate of IDS2018 dataset vs. F1 score of
CADE.

20. As shown in Table 9, CADE achieves a high F1 score on
the Drebin dataset when m = 5 and m = 10, but has some
minor degradation on m = 15 and m = 20. The detection
performance on the IDS2018 dataset is good when m is set to
a higher number e.g., m = 20. Recall that m is the threshold
to control the upper-bound distance that will be considered. A
dissimilar pair can contribute to the loss function only when
their distance is within the radius of m. As such, m can be set
to be higher if the dataset is more dispersed and noisy.

To test the effect of λ, we fix m = 10 as before, and set λ as
1, 0.1, 0.01, and 0.001. λ controls the weight of the contrastive
loss. We can observe from Table 9 that if λ is too small, it
hurts CADE’s performance. The results confirm the importance
of the contrastive loss.

In Algorithm 1, we set the threshold of MAD TMAD as 3.5,
which is an empirical value [40]. We also tested other com-
monly used MAD thresholds of 2, 2.5, 3. A smaller MAD
threshold will detect more samples as potential drifting sam-
ples, but it may not affect the ranking procedure. As shown in
Table 9, the average results of the detected drifting samples
keep the same as TMAD = 3.5 on Drebin and minor fluctu-
ations on the IDS2018 dataset, indicating TMAD has subtle
effects on detecting drifting samples.

To assess the sensitivity of the hyper-parameter λ1 in the
loss function (Eqn.( 2)) of distance-based explanation, we
set λ1 as 0.1, 0.01, 0.001, and 0.0001. As shown in Table 10,
we notice that smaller λ1 can have a slightly smaller average
distance to the nearest centroid on both Drebin and IDS2018
datasets. Also, a smaller λ1 can increase the ratio of perturbed
samples that cross the decision boundary from 91.34% to
99.21% on Drebin-FakeDoc. While for IDS-Infiltration, the
ratio could vary on different values of λ1. But overall, both
evaluation metrics do not have significant differences among
different values of λ1.

Appendix D: IDS2018 Additional Results

In our experiment, we only sampled 10% of the network traf-
fic from the IDS2018 dataset. Traffic sampling is a common
approach in intrusion detection, which allows us to compre-
hensively test different experimental setups. We also find that
including more traffic only increases the computational over-
head and has a negligible influence upon the performance. As
shown in Table 11, as the sampling rate increases, CADE’s F1
scores remain consistently high.
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